Context-aware ranking with factorization models

Lade...
Vorschaubild
Dateien
Zu diesem Dokument gibt es keine Dateien.
Datum
2010
Autor:innen
Herausgeber:innen
Kontakt
ISSN der Zeitschrift
Electronic ISSN
ISBN
978-3-642-16897-0
Bibliografische Daten
Verlag
Berlin [u.a.] : Springer
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
ArXiv-ID
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Gesperrt bis
Titel in einer weiteren Sprache
Publikationstyp
Monographie
Publikationsstatus
Published
Erschienen in
Zusammenfassung

Context-aware ranking is an important task with many applications. E.g. in recommender systems items (products, movies, ...) and for search engines webpages should be ranked. In all these applications, the ranking is not global (i.e. always the same) but depends on the context. Simple examples for context are the user for recommender systems and the query for search engines. More complicated context includes time, last actions, etc. The major problem is that typically the variable domains (e.g. customers, products) are categorical and huge, the observations are very sparse and only positive events are observed. In this book, a generic method for context-aware ranking as well as its application are presented. For modelling a new factorization based on pairwise interactions is proposed and compared to other tensor factorization approaches. For learning, the Bayesian Context-aware Ranking' framework consisting of an optimization criterion and algorithm is developed. The second main part of the book applies this general theory to the three scenarios of item, tag and sequential-set recommendation. Furthermore extensions of time-variant factors and one-class problems are studied. This book generalizes and builds on work that has received the WWW 2010 Best Paper Award', the WSDM 2010 Best Student Paper Award' and the ECML/PKDD 2009 Best Discovery Challenge Award'.

Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
004 Informatik
Schlagwörter
Computational Intelligence, Context-aware Ranking, Factorization Models, Recommender Systems
Konferenz
Rezension
undefined / . - undefined, undefined
Forschungsvorhaben
Organisationseinheiten
Zeitschriftenheft
Datensätze
Zitieren
ISO 690RENDLE, Steffen, 2010. Context-aware ranking with factorization models. Berlin [u.a.] : Springer. ISBN 978-3-642-16897-0
BibTex
@book{Rendle2010Conte-12735,
  year={2010},
  isbn={978-3-642-16897-0},
  publisher={Berlin [u.a.] : Springer},
  title={Context-aware ranking with factorization models},
  author={Rendle, Steffen}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/12735">
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-05-04T08:25:35Z</dcterms:available>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/12735"/>
    <dcterms:title>Context-aware ranking with factorization models</dcterms:title>
    <dcterms:issued>2010</dcterms:issued>
    <dcterms:abstract xml:lang="eng">Context-aware ranking is an important task with many applications. E.g. in recommender systems items (products, movies, ...) and for search engines webpages should be ranked. In all these applications, the ranking is not global (i.e. always the same) but depends on the context. Simple examples for context are the user for recommender systems and the query for search engines. More complicated context includes time, last actions, etc. The major problem is that typically the variable domains (e.g. customers, products) are categorical and huge, the observations are very sparse and only positive events are observed. In this book, a generic method for context-aware ranking as well as its application are presented. For modelling a new factorization based on pairwise interactions is proposed and compared to other tensor factorization approaches. For learning, the `Bayesian Context-aware Ranking' framework consisting of an optimization criterion and algorithm is developed. The second main part of the book applies this general theory to the three scenarios of item, tag and sequential-set recommendation. Furthermore extensions of time-variant factors and one-class problems are studied. This book generalizes and builds on work that has received the `WWW 2010 Best Paper Award', the `WSDM 2010 Best Student Paper Award' and the `ECML/PKDD 2009 Best Discovery Challenge Award'.</dcterms:abstract>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dc:publisher>Berlin [u.a.] : Springer</dc:publisher>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-05-04T08:25:35Z</dc:date>
    <dc:rights>terms-of-use</dc:rights>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <bibo:issn>978-3-642-16897-0</bibo:issn>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:language>eng</dc:language>
    <dc:creator>Rendle, Steffen</dc:creator>
    <dc:contributor>Rendle, Steffen</dc:contributor>
  </rdf:Description>
</rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Kontakt
URL der Originalveröffentl.
Prüfdatum der URL
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Nein
Begutachtet
Diese Publikation teilen