Publikation:

Minimum Strictly Convex Quadrangulations of Convex Polygons

Lade...
Vorschaubild

Dateien

preprint_013.pdf
preprint_013.pdfGröße: 535.17 KBDownloads: 473

Datum

1996

Autor:innen

Müller-Hannemann, Matthias
Weihe, Karsten

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Konstanzer Schriften in Mathematik und Informatik

Auflagebezeichnung

DOI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Green
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Preprint
Publikationsstatus
Published

Erschienen in

Zusammenfassung

We present a linear-time algorithm that decomposes a convex polygon conformally into a minimum number of strictly convex quadrilaterals. Moreover, we characterize the polygons that can be decomposed without additional vertices inside the polygon, and we present a linear-time algorithm for such decompositions, too. As an application, we consider the problem of constructing a minimum conformal refinement of a mesh in the three-dimensional space, which approximates the surface of a workpiece. The latter problem has resulted from a cooperation with an engineering company that sells CAD packages. We have proved that this problem is strongly NP-hard, and we present a linear-time algorithm with a constant approximation ratio of 4.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
004 Informatik

Schlagwörter

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690MÜLLER-HANNEMANN, Matthias, Karsten WEIHE, 1996. Minimum Strictly Convex Quadrangulations of Convex Polygons
BibTex
@unpublished{MullerHannemann1996Minim-6008,
  year={1996},
  title={Minimum Strictly Convex Quadrangulations of Convex Polygons},
  author={Müller-Hannemann, Matthias and Weihe, Karsten}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/6008">
    <dcterms:issued>1996</dcterms:issued>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/6008/1/preprint_013.pdf"/>
    <dc:creator>Müller-Hannemann, Matthias</dc:creator>
    <dc:creator>Weihe, Karsten</dc:creator>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:contributor>Müller-Hannemann, Matthias</dc:contributor>
    <dc:rights>terms-of-use</dc:rights>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dcterms:title>Minimum Strictly Convex Quadrangulations of Convex Polygons</dcterms:title>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/6008/1/preprint_013.pdf"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-24T16:08:43Z</dc:date>
    <dc:format>application/pdf</dc:format>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-24T16:08:43Z</dcterms:available>
    <dc:language>eng</dc:language>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dcterms:abstract xml:lang="eng">We present a linear-time algorithm that decomposes a convex polygon conformally into a minimum number of strictly convex quadrilaterals. Moreover, we characterize the polygons that can be decomposed without additional vertices inside the polygon, and we present a linear-time algorithm for such decompositions, too. As an application, we consider the problem of constructing a minimum conformal refinement of a mesh in the three-dimensional space, which approximates the surface of a workpiece. The latter problem has resulted from a cooperation with an engineering company that sells CAD packages. We have proved that this problem is strongly NP-hard, and we present a linear-time algorithm with a constant approximation ratio of 4.</dcterms:abstract>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:contributor>Weihe, Karsten</dc:contributor>
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/6008"/>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Begutachtet
Diese Publikation teilen