Publikation: Stochastic Modulation Equations on Unbounded Domains
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
We study the impact of small additive space-time white noise on nonlinear SPDEs on unbounded domains close to a bifurcation, where an infinite band of eigenvalues changes stability due to the unboundedness of the underlying domain. Thus we expect not only a slow motion in time, but also a slow spatial modulation of the dominant modes, and we rely on the approximation via modulation or amplitude equations, which acts as a replacement for the lack of random invariant manifolds on extended domains. One technical problem for establishing error estimates in the stochastic case rises from the spatially translation invariant nature of space-time white noise on unbounded domains, which implies that at any time the error is always very large somewhere far out in space. Thus we have to work in weighted spaces that allow for growth at infinity. As a first example we study the stochastic one-dimensional Swift-Hohenberg equation on the whole real line. In this setting, because of the weak regularity of solutions, the standard methods for deterministic modulation equations fail, and we need to develop new tools to treat the approximation. Using energy estimates we are only able to show that solutions of the Ginzburg-Landau equation are Holder continuous in spaces with a very weak weight, which provides just enough regularity to proceed with the error estimates.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
BIANCHI, Luigi Amedeo, Dirk BLOEMKER, 2017. Stochastic Modulation Equations on Unbounded Domains. Equadiff 2017. Bratislava, Slovakia, 24. Juli 2017 - 28. Juli 2017. In: MIKULA, Karol, ed. and others. Proceedings of Equadiff 2017 Conference. Bratislava: Slovak University of Technology, Spektrum Stu Publishing, 2017, pp. 295-304. ISBN 9788022747578BibTex
@inproceedings{Bianchi2017Stoch-41927, year={2017}, title={Stochastic Modulation Equations on Unbounded Domains}, url={http://www.iam.fmph.uniba.sk/amuc/ojs/index.php/equadiff/article/view/717}, isbn={9788022747578}, publisher={Slovak University of Technology, Spektrum Stu Publishing}, address={Bratislava}, booktitle={Proceedings of Equadiff 2017 Conference}, pages={295--304}, editor={Mikula, Karol}, author={Bianchi, Luigi Amedeo and Bloemker, Dirk} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41927"> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:creator>Bianchi, Luigi Amedeo</dc:creator> <dc:contributor>Bloemker, Dirk</dc:contributor> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dc:creator>Bloemker, Dirk</dc:creator> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2018-03-29T08:29:28Z</dc:date> <dc:language>eng</dc:language> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2018-03-29T08:29:28Z</dcterms:available> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/41927"/> <dcterms:issued>2017</dcterms:issued> <dcterms:abstract xml:lang="eng">We study the impact of small additive space-time white noise on nonlinear SPDEs on unbounded domains close to a bifurcation, where an infinite band of eigenvalues changes stability due to the unboundedness of the underlying domain. Thus we expect not only a slow motion in time, but also a slow spatial modulation of the dominant modes, and we rely on the approximation via modulation or amplitude equations, which acts as a replacement for the lack of random invariant manifolds on extended domains. One technical problem for establishing error estimates in the stochastic case rises from the spatially translation invariant nature of space-time white noise on unbounded domains, which implies that at any time the error is always very large somewhere far out in space. Thus we have to work in weighted spaces that allow for growth at infinity. As a first example we study the stochastic one-dimensional Swift-Hohenberg equation on the whole real line. In this setting, because of the weak regularity of solutions, the standard methods for deterministic modulation equations fail, and we need to develop new tools to treat the approximation. Using energy estimates we are only able to show that solutions of the Ginzburg-Landau equation are Holder continuous in spaces with a very weak weight, which provides just enough regularity to proceed with the error estimates.</dcterms:abstract> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dcterms:title>Stochastic Modulation Equations on Unbounded Domains</dcterms:title> <dc:contributor>Bianchi, Luigi Amedeo</dc:contributor> </rdf:Description> </rdf:RDF>