Publikation:

Stochastic Modulation Equations on Unbounded Domains

Lade...
Vorschaubild

Dateien

Zu diesem Dokument gibt es keine Dateien.

Datum

2017

Autor:innen

Bloemker, Dirk

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

URI (zitierfähiger Link)
DOI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Beitrag zu einem Konferenzband
Publikationsstatus
Published

Erschienen in

MIKULA, Karol, ed. and others. Proceedings of Equadiff 2017 Conference. Bratislava: Slovak University of Technology, Spektrum Stu Publishing, 2017, pp. 295-304. ISBN 9788022747578

Zusammenfassung

We study the impact of small additive space-time white noise on nonlinear SPDEs on unbounded domains close to a bifurcation, where an infinite band of eigenvalues changes stability due to the unboundedness of the underlying domain. Thus we expect not only a slow motion in time, but also a slow spatial modulation of the dominant modes, and we rely on the approximation via modulation or amplitude equations, which acts as a replacement for the lack of random invariant manifolds on extended domains. One technical problem for establishing error estimates in the stochastic case rises from the spatially translation invariant nature of space-time white noise on unbounded domains, which implies that at any time the error is always very large somewhere far out in space. Thus we have to work in weighted spaces that allow for growth at infinity. As a first example we study the stochastic one-dimensional Swift-Hohenberg equation on the whole real line. In this setting, because of the weak regularity of solutions, the standard methods for deterministic modulation equations fail, and we need to develop new tools to treat the approximation. Using energy estimates we are only able to show that solutions of the Ginzburg-Landau equation are Holder continuous in spaces with a very weak weight, which provides just enough regularity to proceed with the error estimates.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
510 Mathematik

Schlagwörter

modulation equations, amplitude equations, convolution operator, regularity, Rayleigh-Benard, Swift-Hohenberg, Ginzburg-Landau

Konferenz

Equadiff 2017, 24. Juli 2017 - 28. Juli 2017, Bratislava, Slovakia
Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Verknüpfte Datensätze

Zitieren

ISO 690BIANCHI, Luigi Amedeo, Dirk BLOEMKER, 2017. Stochastic Modulation Equations on Unbounded Domains. Equadiff 2017. Bratislava, Slovakia, 24. Juli 2017 - 28. Juli 2017. In: MIKULA, Karol, ed. and others. Proceedings of Equadiff 2017 Conference. Bratislava: Slovak University of Technology, Spektrum Stu Publishing, 2017, pp. 295-304. ISBN 9788022747578
BibTex
@inproceedings{Bianchi2017Stoch-41927,
  year={2017},
  title={Stochastic Modulation Equations on Unbounded Domains},
  url={http://www.iam.fmph.uniba.sk/amuc/ojs/index.php/equadiff/article/view/717},
  isbn={9788022747578},
  publisher={Slovak University of Technology, Spektrum Stu Publishing},
  address={Bratislava},
  booktitle={Proceedings of Equadiff 2017 Conference},
  pages={295--304},
  editor={Mikula, Karol},
  author={Bianchi, Luigi Amedeo and Bloemker, Dirk}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41927">
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:creator>Bianchi, Luigi Amedeo</dc:creator>
    <dc:contributor>Bloemker, Dirk</dc:contributor>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dc:creator>Bloemker, Dirk</dc:creator>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2018-03-29T08:29:28Z</dc:date>
    <dc:language>eng</dc:language>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2018-03-29T08:29:28Z</dcterms:available>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/41927"/>
    <dcterms:issued>2017</dcterms:issued>
    <dcterms:abstract xml:lang="eng">We study the impact of small additive space-time white noise on nonlinear SPDEs on unbounded domains close to a bifurcation, where an infinite band of eigenvalues changes stability due to the unboundedness of the underlying domain. Thus we expect not only a slow motion in time, but also a slow spatial modulation of the dominant modes, and we rely on the approximation via modulation or amplitude equations, which acts as a replacement for the lack of random invariant manifolds on extended domains. One technical problem for establishing error estimates in the stochastic case rises from the spatially translation invariant nature of space-time white noise on unbounded domains, which implies that at any time the error is always very large somewhere far out in space. Thus we have to work in weighted spaces that allow for growth at infinity. As a first example we study the stochastic one-dimensional Swift-Hohenberg equation on the whole real line. In this setting, because of the weak regularity of solutions, the standard methods for deterministic modulation equations fail, and we need to develop new tools to treat the approximation. Using energy estimates we are only able to show that solutions of the Ginzburg-Landau equation are Holder continuous in spaces with a very weak weight, which provides just enough regularity to proceed with the error estimates.</dcterms:abstract>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dcterms:title>Stochastic Modulation Equations on Unbounded Domains</dcterms:title>
    <dc:contributor>Bianchi, Luigi Amedeo</dc:contributor>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt

Prüfdatum der URL

2018-03-29

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen