Publikation: Nonlinear stability of Ekman boundary layers
Lade...
Dateien
Zu diesem Dokument gibt es keine Dateien.
Datum
2010
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published
Erschienen in
Bulletin of the London Mathematical Society. Wiley-Blackwell. 2010, 42(4), pp. 691-706. ISSN 0024-6093. eISSN 1469-2120. Available under: doi: 10.1112/blms/bdq029
Zusammenfassung
Consider the initial value problem for the three‐dimensional Navier–Stokes equations with rotation in the half‐space ℝ3+ subject to Dirichlet boundary conditions as well as the Ekman spiral, which is a stationary solution to the above equations. It is proved that the Ekman spiral is nonlinearly stable with respect to L2‐perturbations provided that the corresponding Reynolds number is small enough. Moreover, the decay rate can be computed in terms of the decay of the corresponding linear problem.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
510 Mathematik
Schlagwörter
Konferenz
Rezension
undefined / . - undefined, undefined
Zitieren
ISO 690
HESS, Matthias, Matthias HIEBER, Alex MAHALOV, Jürgen SAAL, 2010. Nonlinear stability of Ekman boundary layers. In: Bulletin of the London Mathematical Society. Wiley-Blackwell. 2010, 42(4), pp. 691-706. ISSN 0024-6093. eISSN 1469-2120. Available under: doi: 10.1112/blms/bdq029BibTex
@article{Hess2010Nonli-653.2, year={2010}, doi={10.1112/blms/bdq029}, title={Nonlinear stability of Ekman boundary layers}, number={4}, volume={42}, issn={0024-6093}, journal={Bulletin of the London Mathematical Society}, pages={691--706}, author={Hess, Matthias and Hieber, Matthias and Mahalov, Alex and Saal, Jürgen} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/653.2"> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dcterms:title>Nonlinear stability of Ekman boundary layers</dcterms:title> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2020-11-02T13:07:32Z</dc:date> <dc:rights>terms-of-use</dc:rights> <dc:contributor>Hess, Matthias</dc:contributor> <dc:language>eng</dc:language> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/653.2"/> <dc:contributor>Hieber, Matthias</dc:contributor> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dc:creator>Saal, Jürgen</dc:creator> <dcterms:issued>2010</dcterms:issued> <dc:creator>Hieber, Matthias</dc:creator> <dc:creator>Mahalov, Alex</dc:creator> <dc:contributor>Saal, Jürgen</dc:contributor> <dc:creator>Hess, Matthias</dc:creator> <dc:contributor>Mahalov, Alex</dc:contributor> <dcterms:abstract xml:lang="eng">Consider the initial value problem for the three‐dimensional Navier–Stokes equations with rotation in the half‐space ℝ<sup>3</sup><sub>+</sub> subject to Dirichlet boundary conditions as well as the Ekman spiral, which is a stationary solution to the above equations. It is proved that the Ekman spiral is nonlinearly stable with respect to L<sup>2</sup>‐perturbations provided that the corresponding Reynolds number is small enough. Moreover, the decay rate can be computed in terms of the decay of the corresponding linear problem.</dcterms:abstract> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2020-11-02T13:07:32Z</dcterms:available> </rdf:Description> </rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Begutachtet
Ja