Publikation:

Hierarchical Graph Traversal for Aggregate k Nearest Neighbors Search in Road Networks

Lade...
Vorschaubild

Dateien

Zu diesem Dokument gibt es keine Dateien.

Datum

2020

Autor:innen

Abeywickrama, Tenindra
Cheema, Muhammad Aamir

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

URI (zitierfähiger Link)
DOI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Beitrag zu einem Konferenzband
Publikationsstatus
Published

Erschienen in

BECK, J. Christopher, ed., Oliver BUFFET, ed., Jörg HOFFMANN, ed. and others. Proceedings of the Thirtieth International Conference on Automated Planning and Scheduling. Menlo Park, Kalifornien: Association for the Advancement of Artificial Intelligence, 2020, pp. 2-10. Proceedings of the International Conference on Automated Planning and Scheduling. 30

Zusammenfassung

Location-based services rely heavily on efficient methods that search for relevant points-of-interest (POIs) close to a given location. A k nearest neighbors (kNN) query is one such example that finds k closest POIs from an agent's location. While most existing techniques focus on finding nearby POIs for a single agent, many applications require POIs that are close to multiple agents. In this paper, we study a natural extension of the kNN query for multiple agents, namely, the Aggregate k Nearest Neighbors (AkNN) query. An AkNN query retrieves k POIs with the smallest aggregate distances where the aggregate distance of a POI is obtained by aggregating its distances from the multiple agents (e.g., sum of its distances from each agent). Existing search heuristics are designed for a single agent and do not work well for multiple agents. We propose a novel data structure COLT (Compacted Object-Landmark Tree) to address this gap by enabling efficient hierarchical graph traversal. We then utilize COLT for a wide range of aggregate functions to efficiently answer AkNN queries. In our experiments on real-world and synthetic data sets, our techniques significantly improve query performance, typically outperforming existing approaches by more than an order of magnitude in almost all settings.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
004 Informatik

Schlagwörter

Konferenz

Thirtieth International Conference on Automated Planning and Scheduling, 26. Okt. 2020 - 30. Okt. 2020, Nancy
Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690ABEYWICKRAMA, Tenindra, Muhammad Aamir CHEEMA, Sabine STORANDT, 2020. Hierarchical Graph Traversal for Aggregate k Nearest Neighbors Search in Road Networks. Thirtieth International Conference on Automated Planning and Scheduling. Nancy, 26. Okt. 2020 - 30. Okt. 2020. In: BECK, J. Christopher, ed., Oliver BUFFET, ed., Jörg HOFFMANN, ed. and others. Proceedings of the Thirtieth International Conference on Automated Planning and Scheduling. Menlo Park, Kalifornien: Association for the Advancement of Artificial Intelligence, 2020, pp. 2-10. Proceedings of the International Conference on Automated Planning and Scheduling. 30
BibTex
@inproceedings{Abeywickrama2020Hiera-51740,
  year={2020},
  title={Hierarchical Graph Traversal for Aggregate k Nearest Neighbors Search in Road Networks},
  url={https://www.aaai.org/ojs/index.php/ICAPS/article/view/6639},
  number={30},
  publisher={Association for the Advancement of Artificial Intelligence},
  address={Menlo Park, Kalifornien},
  series={Proceedings of the International Conference on Automated Planning and Scheduling},
  booktitle={Proceedings of the Thirtieth International Conference on Automated Planning and Scheduling},
  pages={2--10},
  editor={Beck, J. Christopher and Buffet, Oliver and Hoffmann, Jörg},
  author={Abeywickrama, Tenindra and Cheema, Muhammad Aamir and Storandt, Sabine}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/51740">
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2020-11-11T10:09:14Z</dcterms:available>
    <dc:contributor>Cheema, Muhammad Aamir</dc:contributor>
    <dc:language>eng</dc:language>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2020-11-11T10:09:14Z</dc:date>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/51740"/>
    <dc:contributor>Storandt, Sabine</dc:contributor>
    <dc:creator>Cheema, Muhammad Aamir</dc:creator>
    <dc:creator>Abeywickrama, Tenindra</dc:creator>
    <dc:creator>Storandt, Sabine</dc:creator>
    <dcterms:abstract xml:lang="eng">Location-based services rely heavily on efficient methods that search for relevant points-of-interest (POIs) close to a given location. A k nearest neighbors (kNN) query is one such example that finds k closest POIs from an agent's location. While most existing techniques focus on finding nearby POIs for a single agent, many applications require POIs that are close to multiple agents. In this paper, we study a natural extension of the kNN query for multiple agents, namely, the Aggregate k Nearest Neighbors (AkNN) query. An AkNN query retrieves k POIs with the smallest aggregate distances where the aggregate distance of a POI is obtained by aggregating its distances from the multiple agents (e.g., sum of its distances from each agent). Existing search heuristics are designed for a single agent and do not work well for multiple agents. We propose a novel data structure COLT (Compacted Object-Landmark Tree) to address this gap by enabling efficient hierarchical graph traversal. We then utilize COLT for a wide range of aggregate functions to efficiently answer AkNN queries. In our experiments on real-world and synthetic data sets, our techniques significantly improve query performance, typically outperforming existing approaches by more than an order of magnitude in almost all settings.</dcterms:abstract>
    <dcterms:title>Hierarchical Graph Traversal for Aggregate k Nearest Neighbors Search in Road Networks</dcterms:title>
    <dc:rights>terms-of-use</dc:rights>
    <dcterms:issued>2020</dcterms:issued>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:contributor>Abeywickrama, Tenindra</dc:contributor>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt

Prüfdatum der URL

2020-06-30

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen