Publikation: Hierarchical Graph Traversal for Aggregate k Nearest Neighbors Search in Road Networks
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
Location-based services rely heavily on efficient methods that search for relevant points-of-interest (POIs) close to a given location. A k nearest neighbors (kNN) query is one such example that finds k closest POIs from an agent's location. While most existing techniques focus on finding nearby POIs for a single agent, many applications require POIs that are close to multiple agents. In this paper, we study a natural extension of the kNN query for multiple agents, namely, the Aggregate k Nearest Neighbors (AkNN) query. An AkNN query retrieves k POIs with the smallest aggregate distances where the aggregate distance of a POI is obtained by aggregating its distances from the multiple agents (e.g., sum of its distances from each agent). Existing search heuristics are designed for a single agent and do not work well for multiple agents. We propose a novel data structure COLT (Compacted Object-Landmark Tree) to address this gap by enabling efficient hierarchical graph traversal. We then utilize COLT for a wide range of aggregate functions to efficiently answer AkNN queries. In our experiments on real-world and synthetic data sets, our techniques significantly improve query performance, typically outperforming existing approaches by more than an order of magnitude in almost all settings.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
ABEYWICKRAMA, Tenindra, Muhammad Aamir CHEEMA, Sabine STORANDT, 2020. Hierarchical Graph Traversal for Aggregate k Nearest Neighbors Search in Road Networks. Thirtieth International Conference on Automated Planning and Scheduling. Nancy, 26. Okt. 2020 - 30. Okt. 2020. In: BECK, J. Christopher, ed., Oliver BUFFET, ed., Jörg HOFFMANN, ed. and others. Proceedings of the Thirtieth International Conference on Automated Planning and Scheduling. Menlo Park, Kalifornien: Association for the Advancement of Artificial Intelligence, 2020, pp. 2-10. Proceedings of the International Conference on Automated Planning and Scheduling. 30BibTex
@inproceedings{Abeywickrama2020Hiera-51740, year={2020}, title={Hierarchical Graph Traversal for Aggregate k Nearest Neighbors Search in Road Networks}, url={https://www.aaai.org/ojs/index.php/ICAPS/article/view/6639}, number={30}, publisher={Association for the Advancement of Artificial Intelligence}, address={Menlo Park, Kalifornien}, series={Proceedings of the International Conference on Automated Planning and Scheduling}, booktitle={Proceedings of the Thirtieth International Conference on Automated Planning and Scheduling}, pages={2--10}, editor={Beck, J. Christopher and Buffet, Oliver and Hoffmann, Jörg}, author={Abeywickrama, Tenindra and Cheema, Muhammad Aamir and Storandt, Sabine} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/51740"> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2020-11-11T10:09:14Z</dcterms:available> <dc:contributor>Cheema, Muhammad Aamir</dc:contributor> <dc:language>eng</dc:language> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2020-11-11T10:09:14Z</dc:date> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/51740"/> <dc:contributor>Storandt, Sabine</dc:contributor> <dc:creator>Cheema, Muhammad Aamir</dc:creator> <dc:creator>Abeywickrama, Tenindra</dc:creator> <dc:creator>Storandt, Sabine</dc:creator> <dcterms:abstract xml:lang="eng">Location-based services rely heavily on efficient methods that search for relevant points-of-interest (POIs) close to a given location. A k nearest neighbors (kNN) query is one such example that finds k closest POIs from an agent's location. While most existing techniques focus on finding nearby POIs for a single agent, many applications require POIs that are close to multiple agents. In this paper, we study a natural extension of the kNN query for multiple agents, namely, the Aggregate k Nearest Neighbors (AkNN) query. An AkNN query retrieves k POIs with the smallest aggregate distances where the aggregate distance of a POI is obtained by aggregating its distances from the multiple agents (e.g., sum of its distances from each agent). Existing search heuristics are designed for a single agent and do not work well for multiple agents. We propose a novel data structure COLT (Compacted Object-Landmark Tree) to address this gap by enabling efficient hierarchical graph traversal. We then utilize COLT for a wide range of aggregate functions to efficiently answer AkNN queries. In our experiments on real-world and synthetic data sets, our techniques significantly improve query performance, typically outperforming existing approaches by more than an order of magnitude in almost all settings.</dcterms:abstract> <dcterms:title>Hierarchical Graph Traversal for Aggregate k Nearest Neighbors Search in Road Networks</dcterms:title> <dc:rights>terms-of-use</dc:rights> <dcterms:issued>2020</dcterms:issued> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:contributor>Abeywickrama, Tenindra</dc:contributor> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> </rdf:Description> </rdf:RDF>