Publikation:

PURPLE : Predictive Active Queue Management Utilizing Congestion Information

Lade...
Vorschaubild

Dateien

purple_predictive_active_queue_management.pdf
purple_predictive_active_queue_management.pdfGröße: 484.25 KBDownloads: 406

Datum

2003

Autor:innen

Pletka, Roman
Mannal, Soenke

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Green
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Beitrag zu einem Konferenzband
Publikationsstatus
Published

Erschienen in

28th Annual IEEE International Conference on Local Computer Networks, 2003. LCN '03. Proceedings.. IEEE, 2003, pp. 21-30. ISBN 0-7695-2037-5. Available under: doi: 10.1109/LCN.2003.1243109

Zusammenfassung

Active Queue Management (AQM) is an attempt to find a delicate balance between two antagonistic Internet queuing requirements: First, buffer space should be maximized to accommodate the possibly huge transient bursts; second, buffer occupation should be minimum so as not to introduce unnecessary end-to-end delays. Traditional AQM mechanisms have been built on heuristics to achieve this balance, and have mostly done so quite well, but often require manual tuning or have resulted in slow convergence. In contrast, the PURPLE approach predicts the impact of its own actions on the behavior of reactive protocols and thus on the short-term future traffic without keeping per-flow state. PURPLE allows much faster convergence of the main AQM parameters, at least towards a local optimum, thereby smoothing and minimizing both congestion feedback and queue occupancy. To improve the quality of the prediction, we also passively monitor (using lightweight operations) information pertaining to the amount of congestion elsewhere in the network, for example, as seen by flows traversing this router.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
004 Informatik

Schlagwörter

Konferenz

28th Annual IEEE International Conference on Local Computer Networks, 2003. LCN '03., Bonn/Konigswinter, Germany
Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690PLETKA, Roman, Marcel WALDVOGEL, Soenke MANNAL, 2003. PURPLE : Predictive Active Queue Management Utilizing Congestion Information. 28th Annual IEEE International Conference on Local Computer Networks, 2003. LCN '03.. Bonn/Konigswinter, Germany. In: 28th Annual IEEE International Conference on Local Computer Networks, 2003. LCN '03. Proceedings.. IEEE, 2003, pp. 21-30. ISBN 0-7695-2037-5. Available under: doi: 10.1109/LCN.2003.1243109
BibTex
@inproceedings{Pletka2003PURPL-6293,
  year={2003},
  doi={10.1109/LCN.2003.1243109},
  title={PURPLE : Predictive Active Queue Management Utilizing Congestion Information},
  isbn={0-7695-2037-5},
  publisher={IEEE},
  booktitle={28th Annual IEEE International Conference on Local Computer Networks, 2003. LCN '03. Proceedings.},
  pages={21--30},
  author={Pletka, Roman and Waldvogel, Marcel and Mannal, Soenke}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/6293">
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/6293/1/purple_predictive_active_queue_management.pdf"/>
    <dc:creator>Waldvogel, Marcel</dc:creator>
    <dc:creator>Mannal, Soenke</dc:creator>
    <dc:rights>terms-of-use</dc:rights>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:language>eng</dc:language>
    <dc:format>application/pdf</dc:format>
    <dcterms:abstract xml:lang="eng">Active Queue Management (AQM) is an attempt to find a delicate balance between two antagonistic Internet queuing requirements: First, buffer space should be maximized to accommodate the possibly huge transient bursts; second, buffer occupation should be minimum so as not to introduce unnecessary end-to-end delays. Traditional AQM mechanisms have been built on heuristics to achieve this balance, and have mostly done so quite well, but often require manual tuning or have resulted in slow convergence. In contrast, the PURPLE approach predicts the impact of its own actions on the behavior of reactive protocols and thus on the short-term future traffic without keeping per-flow state. PURPLE allows much faster convergence of the main AQM parameters, at least towards a local optimum, thereby smoothing and minimizing both congestion feedback and queue occupancy. To improve the quality of the prediction, we also passively monitor (using lightweight operations) information pertaining to the amount of congestion elsewhere in the network, for example, as seen by flows traversing this router.</dcterms:abstract>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/6293"/>
    <dc:contributor>Mannal, Soenke</dc:contributor>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:creator>Pletka, Roman</dc:creator>
    <dcterms:bibliographicCitation>First publ. as: Conference Paper IEEE LCN, Bonn, Oktober 2003</dcterms:bibliographicCitation>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/6293/1/purple_predictive_active_queue_management.pdf"/>
    <dc:contributor>Waldvogel, Marcel</dc:contributor>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-24T16:11:12Z</dcterms:available>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dcterms:issued>2003</dcterms:issued>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-24T16:11:12Z</dc:date>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dc:contributor>Pletka, Roman</dc:contributor>
    <dcterms:title>PURPLE : Predictive Active Queue Management Utilizing Congestion Information</dcterms:title>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Nein
Begutachtet
Diese Publikation teilen