Publikation: CFD based parameter tuning for motion control of robotic fish
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
After millions of years of evolution, fishes have been endowed with agile swimming ability to accomplish various behaviourally relevant tasks. In comparison, robotic fish are still quite poor swimmers. One of the unique challenges facing robotic fish is the difficulty in tuning the motion control parameters on the robot directly. This is mainly due to the complex fluid environment robotic fish need to contend with and endurance limitations (i.e. battery capacity limitations). To overcome these limitations, we propose a computational fluid dynamics (CFD) simulation platform to first tune the motion control parameters for the computational robotic fish and then refine the parameters by experiments on robotic fish. Within the simulation platform, the body morphology and gait control of the computational robotic fish are designed according to a robotic fish. The gait control is implemented by a central pattern generator (CPG); The CFD model is solved by using a hydrodynamic-kinematics strong-coupling method. We tested our simulation platform with three basic tasks under active disturbance rejection control (ADRC) and try-and-error-based parameter tuning. Trajectory comparisons between the computational robotic fish and robotic fish verify the effectiveness of our simulation platform. Moreover, power costs and swimming efficiency under the motion control are also analyzed based on the outputs from the simulation platform. Our results indicate that the CFD based simulation platform is powerful and robust, and shed new light on the efficient design and parameter optimization of the motion control of robotic fish.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
TIAN, Runyu, Liang LI, Wei WANG, Xinghua CHANG, Sridhar RAVI, Guangming XIE, 2020. CFD based parameter tuning for motion control of robotic fish. In: Bioinspiration & Biomimetics. Institute of Physics Publishing (IOP). 2020, 15(2), 026008. ISSN 1748-3182. eISSN 1748-3190. Available under: doi: 10.1088/1748-3190/ab6b6cBibTex
@article{Tian2020-02-24based-49238, year={2020}, doi={10.1088/1748-3190/ab6b6c}, title={CFD based parameter tuning for motion control of robotic fish}, number={2}, volume={15}, issn={1748-3182}, journal={Bioinspiration & Biomimetics}, author={Tian, Runyu and Li, Liang and Wang, Wei and Chang, Xinghua and Ravi, Sridhar and Xie, Guangming}, note={Article Number: 026008} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/49238"> <dcterms:issued>2020-02-24</dcterms:issued> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/43615"/> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/43615"/> <dc:creator>Li, Liang</dc:creator> <dcterms:title>CFD based parameter tuning for motion control of robotic fish</dcterms:title> <dc:creator>Chang, Xinghua</dc:creator> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/> <dc:creator>Tian, Runyu</dc:creator> <dc:language>eng</dc:language> <dc:contributor>Li, Liang</dc:contributor> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2020-04-21T09:46:33Z</dcterms:available> <dcterms:abstract xml:lang="eng">After millions of years of evolution, fishes have been endowed with agile swimming ability to accomplish various behaviourally relevant tasks. In comparison, robotic fish are still quite poor swimmers. One of the unique challenges facing robotic fish is the difficulty in tuning the motion control parameters on the robot directly. This is mainly due to the complex fluid environment robotic fish need to contend with and endurance limitations (i.e. battery capacity limitations). To overcome these limitations, we propose a computational fluid dynamics (CFD) simulation platform to first tune the motion control parameters for the computational robotic fish and then refine the parameters by experiments on robotic fish. Within the simulation platform, the body morphology and gait control of the computational robotic fish are designed according to a robotic fish. The gait control is implemented by a central pattern generator (CPG); The CFD model is solved by using a hydrodynamic-kinematics strong-coupling method. We tested our simulation platform with three basic tasks under active disturbance rejection control (ADRC) and try-and-error-based parameter tuning. Trajectory comparisons between the computational robotic fish and robotic fish verify the effectiveness of our simulation platform. Moreover, power costs and swimming efficiency under the motion control are also analyzed based on the outputs from the simulation platform. Our results indicate that the CFD based simulation platform is powerful and robust, and shed new light on the efficient design and parameter optimization of the motion control of robotic fish.</dcterms:abstract> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:contributor>Wang, Wei</dc:contributor> <dc:creator>Xie, Guangming</dc:creator> <dc:contributor>Tian, Runyu</dc:contributor> <dc:contributor>Chang, Xinghua</dc:contributor> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2020-04-21T09:46:33Z</dc:date> <dc:creator>Ravi, Sridhar</dc:creator> <dc:creator>Wang, Wei</dc:creator> <dc:contributor>Xie, Guangming</dc:contributor> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/49238"/> <dc:contributor>Ravi, Sridhar</dc:contributor> </rdf:Description> </rdf:RDF>