Publikation: Translating solutions for Gaußcurvature flows with Neumann boundary conditions
Lade...
Dateien
Zu diesem Dokument gibt es keine Dateien.
Datum
2004
Autor:innen
Schwetlick, Hartmut
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published
Erschienen in
Pacific Journal of Mathematics. 2004, 213(1), pp. 89-109. ISSN 0030-8730. eISSN 1945-5844. Available under: doi: 10.2140/pjm.2004.213.89
Zusammenfassung
We consider strictly convex hypersurfaces which are evolving by the non-parametric logarithmic Gauß curvature flow subject to a Neumann boundary condition. Solutions are shown to converge smoothly to hypersurfaces moving by translation. In particular, for bounded domains we prove that convex functions with prescribed normal derivative satisfy a uniform oscillation estimate.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
510 Mathematik
Schlagwörter
Konferenz
Rezension
undefined / . - undefined, undefined
Zitieren
ISO 690
SCHNÜRER, Oliver C., Hartmut SCHWETLICK, 2004. Translating solutions for Gaußcurvature flows with Neumann boundary conditions. In: Pacific Journal of Mathematics. 2004, 213(1), pp. 89-109. ISSN 0030-8730. eISSN 1945-5844. Available under: doi: 10.2140/pjm.2004.213.89BibTex
@article{Schnurer2004-01-01Trans-41194,
year={2004},
doi={10.2140/pjm.2004.213.89},
title={Translating solutions for Gaußcurvature flows with Neumann boundary conditions},
number={1},
volume={213},
issn={0030-8730},
journal={Pacific Journal of Mathematics},
pages={89--109},
author={Schnürer, Oliver C. and Schwetlick, Hartmut}
}RDF
<rdf:RDF
xmlns:dcterms="http://purl.org/dc/terms/"
xmlns:dc="http://purl.org/dc/elements/1.1/"
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:bibo="http://purl.org/ontology/bibo/"
xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
xmlns:foaf="http://xmlns.com/foaf/0.1/"
xmlns:void="http://rdfs.org/ns/void#"
xmlns:xsd="http://www.w3.org/2001/XMLSchema#" >
<rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41194">
<dc:contributor>Schnürer, Oliver C.</dc:contributor>
<dc:creator>Schnürer, Oliver C.</dc:creator>
<foaf:homepage rdf:resource="http://localhost:8080/"/>
<dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2018-02-01T15:31:08Z</dc:date>
<dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
<void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
<dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2018-02-01T15:31:08Z</dcterms:available>
<dc:language>eng</dc:language>
<dc:creator>Schwetlick, Hartmut</dc:creator>
<dc:contributor>Schwetlick, Hartmut</dc:contributor>
<dcterms:issued>2004-01-01</dcterms:issued>
<dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
<dcterms:abstract xml:lang="eng">We consider strictly convex hypersurfaces which are evolving by the non-parametric logarithmic Gauß curvature flow subject to a Neumann boundary condition. Solutions are shown to converge smoothly to hypersurfaces moving by translation. In particular, for bounded domains we prove that convex functions with prescribed normal derivative satisfy a uniform oscillation estimate.</dcterms:abstract>
<bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/41194"/>
<dcterms:title>Translating solutions for Gaußcurvature flows with Neumann boundary conditions</dcterms:title>
</rdf:Description>
</rdf:RDF>Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Nein