Publikation:

Functional Specialization of Neural Input Elements to the Drosophila ON Motion Detector

Lade...
Vorschaubild

Dateien

Zu diesem Dokument gibt es keine Dateien.

Datum

2015

Autor:innen

Ammer, Georg
Leonhardt, Aljoscha
Dickson, Barry J.
Borst, Alexander

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

URI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

Current Biology. Cell Press. 2015, 25(17), pp. 2247-2253. ISSN 0960-9822. eISSN 1879-0445. Available under: doi: 10.1016/j.cub.2015.07.014

Zusammenfassung

Detecting the direction of visual movement is fundamental for every sighted animal in order to navigate, avoid predators, or detect conspecifics. Algorithmic models of correlation-type motion detectors describe the underlying computation remarkably well. They consist of two spatially separated input lines that are asymmetrically filtered in time and then interact in a nonlinear way. However, the cellular implementation of this computation remains elusive. Recent connectomic data of the Drosophila optic lobe has suggested a neural circuit for the detection of moving bright edges (ON motion) with medulla cells Mi1 and Tm3 providing spatially offset input to direction-selective T4 cells, thereby forming the two input lines of a motion detector. Electrophysiological characterization of Mi1 and Tm3 revealed different temporal filtering properties and proposed them to correspond to the delayed and direct input, respectively. Here, we test this hypothesis by silencing either Mi1 or Tm3 cells and using electrophysiological recordings and behavioral responses of flies as a readout. We show that Mi1 is a necessary element of the ON pathway under all stimulus conditions. In contrast, Tm3 is specifically required only for the detection of fast ON motion in the preferred direction. We thereby provide first functional evidence that Mi1 and Tm3 are key elements of the ON pathway and uncover an unexpected functional specialization of these two cell types. Our results thus require an elaboration of the currently prevailing model for ON motion detection and highlight the importance of functional studies for neural circuit breaking.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
570 Biowissenschaften, Biologie

Schlagwörter

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690AMMER, Georg, Aljoscha LEONHARDT, Armin BAHL, Barry J. DICKSON, Alexander BORST, 2015. Functional Specialization of Neural Input Elements to the Drosophila ON Motion Detector. In: Current Biology. Cell Press. 2015, 25(17), pp. 2247-2253. ISSN 0960-9822. eISSN 1879-0445. Available under: doi: 10.1016/j.cub.2015.07.014
BibTex
@article{Ammer2015-08-31Funct-53487,
  year={2015},
  doi={10.1016/j.cub.2015.07.014},
  title={Functional Specialization of Neural Input Elements to the Drosophila ON Motion Detector},
  number={17},
  volume={25},
  issn={0960-9822},
  journal={Current Biology},
  pages={2247--2253},
  author={Ammer, Georg and Leonhardt, Aljoscha and Bahl, Armin and Dickson, Barry J. and Borst, Alexander}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/53487">
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:creator>Borst, Alexander</dc:creator>
    <dc:creator>Bahl, Armin</dc:creator>
    <dc:contributor>Bahl, Armin</dc:contributor>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/53487"/>
    <dc:language>eng</dc:language>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:rights>terms-of-use</dc:rights>
    <dc:contributor>Ammer, Georg</dc:contributor>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-04-26T12:18:52Z</dcterms:available>
    <dcterms:title>Functional Specialization of Neural Input Elements to the Drosophila ON Motion Detector</dcterms:title>
    <dcterms:abstract xml:lang="eng">Detecting the direction of visual movement is fundamental for every sighted animal in order to navigate, avoid predators, or detect conspecifics. Algorithmic models of correlation-type motion detectors describe the underlying computation remarkably well. They consist of two spatially separated input lines that are asymmetrically filtered in time and then interact in a nonlinear way. However, the cellular implementation of this computation remains elusive. Recent connectomic data of the Drosophila optic lobe has suggested a neural circuit for the detection of moving bright edges (ON motion) with medulla cells Mi1 and Tm3 providing spatially offset input to direction-selective T4 cells, thereby forming the two input lines of a motion detector. Electrophysiological characterization of Mi1 and Tm3 revealed different temporal filtering properties and proposed them to correspond to the delayed and direct input, respectively. Here, we test this hypothesis by silencing either Mi1 or Tm3 cells and using electrophysiological recordings and behavioral responses of flies as a readout. We show that Mi1 is a necessary element of the ON pathway under all stimulus conditions. In contrast, Tm3 is specifically required only for the detection of fast ON motion in the preferred direction. We thereby provide first functional evidence that Mi1 and Tm3 are key elements of the ON pathway and uncover an unexpected functional specialization of these two cell types. Our results thus require an elaboration of the currently prevailing model for ON motion detection and highlight the importance of functional studies for neural circuit breaking.</dcterms:abstract>
    <dcterms:issued>2015-08-31</dcterms:issued>
    <dc:creator>Ammer, Georg</dc:creator>
    <dc:contributor>Leonhardt, Aljoscha</dc:contributor>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/>
    <dc:creator>Dickson, Barry J.</dc:creator>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/>
    <dc:creator>Leonhardt, Aljoscha</dc:creator>
    <dc:contributor>Borst, Alexander</dc:contributor>
    <dc:contributor>Dickson, Barry J.</dc:contributor>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-04-26T12:18:52Z</dc:date>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Nein
Begutachtet
Ja
Diese Publikation teilen