Publikation: Aggregating Robots Compute : An Adaptive Heuristic for the Euclidean Steiner Tree Problem
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
It is becoming state-of-the-art to form large-scale multi-agent systems or artificial swarms showing adaptive behavior by constructing high numbers of cooperating, embodied, mobile agents (robots). For the sake of space- and cost-efficiency such robots are typically miniaturized and equipped with only few sensors and actuators resulting in rather simple devices. In order to overcome these constraints, bio-inspired concepts of self-organization and emergent properties are applied. Thus, accuracy is usually not a trait of such systems, but robustness and fault tolerance are. It turns out that they are applicable to even hard problems and reliably deliver approximated solutions. Based on these principles we present a heuristic for the Euclidean Steiner tree problem which is NP-hard. Basically, it is the problem of connecting objects in a plane efficiently. The proposed system is investigated from two different viewpoints: computationally and behaviorally. While the performance is, as expected, clearly suboptimal but still reasonably well, the system is adaptive and robust.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
HAMANN, Heiko, Heinz WÖRN, 2008. Aggregating Robots Compute : An Adaptive Heuristic for the Euclidean Steiner Tree Problem. 10th International Conference on Simulation of Adaptive Behavior (SAB 2008). Osaka, Japan, 7. Juli 2008 - 12. Juli 2008. In: ASADA, Minoru, ed., John C. T. HALLAM, ed., Jean-Arcady MEYER, ed., Jun TANI, ed.. From Animals to Animats 10 : 10th International Conference on Simulation of Adaptive Behavior, SAB 2008, Osaka, Japan, July 7-12, 2008, Proceedings. Berlin: Springer, 2008, pp. 447-456. Lecture Notes in Artificial Intelligence. 5040. ISSN 0302-9743. eISSN 1611-3349. ISBN 978-3-540-69133-4. Available under: doi: 10.1007/978-3-540-69134-1_44BibTex
@inproceedings{Hamann2008Aggre-59919, year={2008}, doi={10.1007/978-3-540-69134-1_44}, title={Aggregating Robots Compute : An Adaptive Heuristic for the Euclidean Steiner Tree Problem}, number={5040}, isbn={978-3-540-69133-4}, issn={0302-9743}, publisher={Springer}, address={Berlin}, series={Lecture Notes in Artificial Intelligence}, booktitle={From Animals to Animats 10 : 10th International Conference on Simulation of Adaptive Behavior, SAB 2008, Osaka, Japan, July 7-12, 2008, Proceedings}, pages={447--456}, editor={Asada, Minoru and Hallam, John C. T. and Meyer, Jean-Arcady and Tani, Jun}, author={Hamann, Heiko and Wörn, Heinz} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/59919"> <dcterms:issued>2008</dcterms:issued> <dc:contributor>Hamann, Heiko</dc:contributor> <dc:creator>Hamann, Heiko</dc:creator> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:rights>terms-of-use</dc:rights> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2023-01-24T14:38:55Z</dc:date> <dcterms:abstract xml:lang="eng">It is becoming state-of-the-art to form large-scale multi-agent systems or artificial swarms showing adaptive behavior by constructing high numbers of cooperating, embodied, mobile agents (robots). For the sake of space- and cost-efficiency such robots are typically miniaturized and equipped with only few sensors and actuators resulting in rather simple devices. In order to overcome these constraints, bio-inspired concepts of self-organization and emergent properties are applied. Thus, accuracy is usually not a trait of such systems, but robustness and fault tolerance are. It turns out that they are applicable to even hard problems and reliably deliver approximated solutions. Based on these principles we present a heuristic for the Euclidean Steiner tree problem which is NP-hard. Basically, it is the problem of connecting objects in a plane efficiently. The proposed system is investigated from two different viewpoints: computationally and behaviorally. While the performance is, as expected, clearly suboptimal but still reasonably well, the system is adaptive and robust.</dcterms:abstract> <dc:contributor>Wörn, Heinz</dc:contributor> <dc:language>eng</dc:language> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2023-01-24T14:38:55Z</dcterms:available> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/59919"/> <dcterms:title>Aggregating Robots Compute : An Adaptive Heuristic for the Euclidean Steiner Tree Problem</dcterms:title> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:creator>Wörn, Heinz</dc:creator> </rdf:Description> </rdf:RDF>