Publikation:

Aggregating Robots Compute : An Adaptive Heuristic for the Euclidean Steiner Tree Problem

Lade...
Vorschaubild

Dateien

Zu diesem Dokument gibt es keine Dateien.

Datum

2008

Autor:innen

Wörn, Heinz

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

URI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Beitrag zu einem Konferenzband
Publikationsstatus
Published

Erschienen in

ASADA, Minoru, ed., John C. T. HALLAM, ed., Jean-Arcady MEYER, ed., Jun TANI, ed.. From Animals to Animats 10 : 10th International Conference on Simulation of Adaptive Behavior, SAB 2008, Osaka, Japan, July 7-12, 2008, Proceedings. Berlin: Springer, 2008, pp. 447-456. Lecture Notes in Artificial Intelligence. 5040. ISSN 0302-9743. eISSN 1611-3349. ISBN 978-3-540-69133-4. Available under: doi: 10.1007/978-3-540-69134-1_44

Zusammenfassung

It is becoming state-of-the-art to form large-scale multi-agent systems or artificial swarms showing adaptive behavior by constructing high numbers of cooperating, embodied, mobile agents (robots). For the sake of space- and cost-efficiency such robots are typically miniaturized and equipped with only few sensors and actuators resulting in rather simple devices. In order to overcome these constraints, bio-inspired concepts of self-organization and emergent properties are applied. Thus, accuracy is usually not a trait of such systems, but robustness and fault tolerance are. It turns out that they are applicable to even hard problems and reliably deliver approximated solutions. Based on these principles we present a heuristic for the Euclidean Steiner tree problem which is NP-hard. Basically, it is the problem of connecting objects in a plane efficiently. The proposed system is investigated from two different viewpoints: computationally and behaviorally. While the performance is, as expected, clearly suboptimal but still reasonably well, the system is adaptive and robust.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
004 Informatik

Schlagwörter

Minimal Span Tree, Steiner Tree, Random Tree, Swarm Intelligence, Steiner Point

Konferenz

10th International Conference on Simulation of Adaptive Behavior (SAB 2008), 7. Juli 2008 - 12. Juli 2008, Osaka, Japan
Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690HAMANN, Heiko, Heinz WÖRN, 2008. Aggregating Robots Compute : An Adaptive Heuristic for the Euclidean Steiner Tree Problem. 10th International Conference on Simulation of Adaptive Behavior (SAB 2008). Osaka, Japan, 7. Juli 2008 - 12. Juli 2008. In: ASADA, Minoru, ed., John C. T. HALLAM, ed., Jean-Arcady MEYER, ed., Jun TANI, ed.. From Animals to Animats 10 : 10th International Conference on Simulation of Adaptive Behavior, SAB 2008, Osaka, Japan, July 7-12, 2008, Proceedings. Berlin: Springer, 2008, pp. 447-456. Lecture Notes in Artificial Intelligence. 5040. ISSN 0302-9743. eISSN 1611-3349. ISBN 978-3-540-69133-4. Available under: doi: 10.1007/978-3-540-69134-1_44
BibTex
@inproceedings{Hamann2008Aggre-59919,
  year={2008},
  doi={10.1007/978-3-540-69134-1_44},
  title={Aggregating Robots Compute : An Adaptive Heuristic for the Euclidean Steiner Tree Problem},
  number={5040},
  isbn={978-3-540-69133-4},
  issn={0302-9743},
  publisher={Springer},
  address={Berlin},
  series={Lecture Notes in Artificial Intelligence},
  booktitle={From Animals to Animats 10 : 10th International Conference on Simulation of Adaptive Behavior, SAB 2008, Osaka, Japan, July 7-12, 2008, Proceedings},
  pages={447--456},
  editor={Asada, Minoru and Hallam, John C. T. and Meyer, Jean-Arcady and Tani, Jun},
  author={Hamann, Heiko and Wörn, Heinz}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/59919">
    <dcterms:issued>2008</dcterms:issued>
    <dc:contributor>Hamann, Heiko</dc:contributor>
    <dc:creator>Hamann, Heiko</dc:creator>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:rights>terms-of-use</dc:rights>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2023-01-24T14:38:55Z</dc:date>
    <dcterms:abstract xml:lang="eng">It is becoming state-of-the-art to form large-scale multi-agent systems or artificial swarms showing adaptive behavior by constructing high numbers of cooperating, embodied, mobile agents (robots). For the sake of space- and cost-efficiency such robots are typically miniaturized and equipped with only few sensors and actuators resulting in rather simple devices. In order to overcome these constraints, bio-inspired concepts of self-organization and emergent properties are applied. Thus, accuracy is usually not a trait of such systems, but robustness and fault tolerance are. It turns out that they are applicable to even hard problems and reliably deliver approximated solutions. Based on these principles we present a heuristic for the Euclidean Steiner tree problem which is NP-hard. Basically, it is the problem of connecting objects in a plane efficiently. The proposed system is investigated from two different viewpoints: computationally and behaviorally. While the performance is, as expected, clearly suboptimal but still reasonably well, the system is adaptive and robust.</dcterms:abstract>
    <dc:contributor>Wörn, Heinz</dc:contributor>
    <dc:language>eng</dc:language>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2023-01-24T14:38:55Z</dcterms:available>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/59919"/>
    <dcterms:title>Aggregating Robots Compute : An Adaptive Heuristic for the Euclidean Steiner Tree Problem</dcterms:title>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:creator>Wörn, Heinz</dc:creator>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Nein
Begutachtet
Diese Publikation teilen