Publikation: Bubble Treemaps for Uncertainty Visualization
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
We present a novel type of circular treemap, where we intentionally allocate extra space for additional visual variables. With this extended visual design space, we encode hierarchically structured data along with their uncertainties in a combined diagram. We introduce a hierarchical and force-based circle-packing algorithm to compute Bubble Treemaps, where each node is visualized using nested contour arcs. Bubble Treemaps do not require any color or shading, which offers additional design choices. We explore uncertainty visualization as an application of our treemaps using standard error and Monte Carlo-based statistical models. To this end, we discuss how uncertainty propagates within hierarchies. Furthermore, we show the effectiveness of our visualization using three different examples: the package structure of Flare, the S&P 500 index, and the US consumer expenditure survey.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
GÖRTLER, Jochen, Christoph SCHULZ, Daniel WEISKOPF, Oliver DEUSSEN, 2018. Bubble Treemaps for Uncertainty Visualization. In: IEEE Transactions on Visualization and Computer Graphics. 2018, 24(1), pp. 719-728. ISSN 1077-2626. eISSN 1941-0506. Available under: doi: 10.1109/TVCG.2017.2743959BibTex
@article{Gortler2018-01Bubbl-41123, year={2018}, doi={10.1109/TVCG.2017.2743959}, title={Bubble Treemaps for Uncertainty Visualization}, number={1}, volume={24}, issn={1077-2626}, journal={IEEE Transactions on Visualization and Computer Graphics}, pages={719--728}, author={Görtler, Jochen and Schulz, Christoph and Weiskopf, Daniel and Deussen, Oliver} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41123"> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:creator>Weiskopf, Daniel</dc:creator> <dc:creator>Deussen, Oliver</dc:creator> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2018-01-24T09:34:28Z</dc:date> <dc:creator>Görtler, Jochen</dc:creator> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:contributor>Schulz, Christoph</dc:contributor> <dcterms:title>Bubble Treemaps for Uncertainty Visualization</dcterms:title> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/41123"/> <dc:contributor>Weiskopf, Daniel</dc:contributor> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dcterms:issued>2018-01</dcterms:issued> <dc:contributor>Görtler, Jochen</dc:contributor> <dc:creator>Schulz, Christoph</dc:creator> <dcterms:abstract xml:lang="eng">We present a novel type of circular treemap, where we intentionally allocate extra space for additional visual variables. With this extended visual design space, we encode hierarchically structured data along with their uncertainties in a combined diagram. We introduce a hierarchical and force-based circle-packing algorithm to compute Bubble Treemaps, where each node is visualized using nested contour arcs. Bubble Treemaps do not require any color or shading, which offers additional design choices. We explore uncertainty visualization as an application of our treemaps using standard error and Monte Carlo-based statistical models. To this end, we discuss how uncertainty propagates within hierarchies. Furthermore, we show the effectiveness of our visualization using three different examples: the package structure of Flare, the S&P 500 index, and the US consumer expenditure survey.</dcterms:abstract> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2018-01-24T09:34:28Z</dcterms:available> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:contributor>Deussen, Oliver</dc:contributor> <dc:language>eng</dc:language> </rdf:Description> </rdf:RDF>