Publikation:

Full Perfect Extension Pruning for Frequent Subgraph Mining

Lade...
Vorschaubild

Dateien

bookchapter.pdf
bookchapter.pdfGröße: 250.71 KBDownloads: 236

Datum

2009

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

DOI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Green
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Beitrag zu einem Sammelband
Publikationsstatus
Published

Erschienen in

ZIGHED, Djamel A., ed. and others. Mining Complex Data. Berlin: Springer, 2009, pp. 189-205. Studies in Computational Intelligence. Vol. 165

Zusammenfassung

Mining graph databases for frequent subgraphs has recently developed into an area of intensive research. Its main goals are to reduce the execution time of the existing basic algorithms and to enhance their capability to find meaningful graph fragments. Here we present a method to achieve the former, namely an improvement of what we called "perfect extension pruning'' in an earlier paper. With this method the number of generated fragments and visited search tree nodes can be reduced, often considerably, thus accelerating the search. We describe the method in detail and present experimental results that demonstrate its usefulness.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
004 Informatik

Schlagwörter

subgraph, mining, frequent

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690BORGELT, Christian, Thorsten MEINL, 2009. Full Perfect Extension Pruning for Frequent Subgraph Mining. In: ZIGHED, Djamel A., ed. and others. Mining Complex Data. Berlin: Springer, 2009, pp. 189-205. Studies in Computational Intelligence. Vol. 165
BibTex
@incollection{Borgelt2009Perfe-5878,
  year={2009},
  title={Full Perfect Extension Pruning for Frequent Subgraph Mining},
  number={Vol. 165},
  publisher={Springer},
  address={Berlin},
  series={Studies in Computational Intelligence},
  booktitle={Mining Complex Data},
  pages={189--205},
  editor={Zighed, Djamel A.},
  author={Borgelt, Christian and Meinl, Thorsten}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/5878">
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/5878"/>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dcterms:title>Full Perfect Extension Pruning for Frequent Subgraph Mining</dcterms:title>
    <dcterms:abstract xml:lang="eng">Mining graph databases for frequent subgraphs has recently developed into an area of intensive research. Its main goals are to reduce the execution time of the existing basic algorithms and to enhance their capability to find meaningful graph fragments. Here we present a method to achieve the former, namely an improvement of what we called "perfect extension pruning'' in an earlier paper. With this method the number of generated fragments and visited search tree nodes can be reduced, often considerably, thus accelerating the search. We describe the method in detail and present experimental results that demonstrate its usefulness.</dcterms:abstract>
    <dc:contributor>Meinl, Thorsten</dc:contributor>
    <dc:language>eng</dc:language>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:rights>terms-of-use</dc:rights>
    <dc:creator>Borgelt, Christian</dc:creator>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/5878/1/bookchapter.pdf"/>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/5878/1/bookchapter.pdf"/>
    <dcterms:issued>2009</dcterms:issued>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-24T16:00:56Z</dcterms:available>
    <dc:creator>Meinl, Thorsten</dc:creator>
    <dc:format>application/pdf</dc:format>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-24T16:00:56Z</dc:date>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:contributor>Borgelt, Christian</dc:contributor>
    <dcterms:bibliographicCitation>First publ. in: Mining Complex Data  / Djamel A. Zighed ... (eds.). (Studies in Computational Intelligence, Vol. 165). Berlin: Springer, 2009, pp. 189-205</dcterms:bibliographicCitation>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen