Publikation: On the lattice structure of kernel operators
Lade...
Dateien
Zu diesem Dokument gibt es keine Dateien.
Datum
2015
Autor:innen
Gerlach, Moritz
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
ArXiv-ID
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published
Erschienen in
Mathematische Nachrichten. 2015, 288(5-6), pp. 584-592. ISSN 0025-584X. eISSN 1522-2616. Available under: doi: 10.1002/mana.201300218
Zusammenfassung
Consider the lattice of bounded linear operators on the space of Borel measures on a Polish space. We prove that the operators which are continuous with respect to the weak topology induced by the bounded measurable functions form a sublattice that is lattice isomorphic to the space of transition kernels. As an application we present a purely analytic proof of Doob's theorem concerning stability of transition semigroups.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
510 Mathematik
Schlagwörter
Lattice structure, transition kernel, weak topology, Doob’s theorem
Konferenz
Rezension
undefined / . - undefined, undefined
Zitieren
ISO 690
GERLACH, Moritz, Markus KUNZE, 2015. On the lattice structure of kernel operators. In: Mathematische Nachrichten. 2015, 288(5-6), pp. 584-592. ISSN 0025-584X. eISSN 1522-2616. Available under: doi: 10.1002/mana.201300218BibTex
@article{Gerlach2015latti-41248, year={2015}, doi={10.1002/mana.201300218}, title={On the lattice structure of kernel operators}, number={5-6}, volume={288}, issn={0025-584X}, journal={Mathematische Nachrichten}, pages={584--592}, author={Gerlach, Moritz and Kunze, Markus} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41248"> <dc:contributor>Gerlach, Moritz</dc:contributor> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/41248"/> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:creator>Kunze, Markus</dc:creator> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2018-02-06T12:46:28Z</dcterms:available> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2018-02-06T12:46:28Z</dc:date> <dcterms:abstract xml:lang="eng">Consider the lattice of bounded linear operators on the space of Borel measures on a Polish space. We prove that the operators which are continuous with respect to the weak topology induced by the bounded measurable functions form a sublattice that is lattice isomorphic to the space of transition kernels. As an application we present a purely analytic proof of Doob's theorem concerning stability of transition semigroups.</dcterms:abstract> <dcterms:issued>2015</dcterms:issued> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dcterms:title>On the lattice structure of kernel operators</dcterms:title> <dc:language>eng</dc:language> <dc:contributor>Kunze, Markus</dc:contributor> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dc:creator>Gerlach, Moritz</dc:creator> </rdf:Description> </rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja