Publikation: ENQUIRE automatically reconstructs, expands, and drives enrichment analysis of gene and Mesh co-occurrence networks from context-specific biomedical literature
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Institutionen der Bundesrepublik Deutschland: 01ZX2205A
Institutionen der Bundesrepublik Deutschland: 161L0244A
Institutionen der Bundesrepublik Deutschland: 16LW0338K
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
The accelerating growth of scientific literature overwhelms our capacity to manually distil complex phenomena like molecular networks linked to diseases. Moreover, biases in biomedical research and database annotation limit our interpretation of facts and generation of hypotheses. ENQUIRE (Expanding Networks by Querying Unexpectedly Inter-Related Entities) offers a time- and resource-efficient alternative to manual literature curation and database mining. ENQUIRE reconstructs and expands co-occurrence networks of genes and biomedical ontologies from user-selected input corpora and network-inferred PubMed queries. Its modest resource usage and the integration of text mining, automatic querying, and network-based statistics mitigating literature biases makes ENQUIRE unique in its broad-scope applications. For example, ENQUIRE can generate co-occurrence gene networks that reflect high-confidence, functional networks. When tested on case studies spanning cancer, cell differentiation, and immunity, ENQUIRE identified interlinked genes and enriched pathways unique to each topic, thereby preserving their underlying context specificity. ENQUIRE supports biomedical researchers by easing literature annotation, boosting hypothesis formulation, and facilitating the identification of molecular targets for subsequent experimentation.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
MUSELLA, Luca, Alejandro AFONSO CASTRO, Xin LAI, Max WIDMANN, Julio VERA, 2025. ENQUIRE automatically reconstructs, expands, and drives enrichment analysis of gene and Mesh co-occurrence networks from context-specific biomedical literature. In: PLOS Computational Biology. Public Library of Science (PLoS). 2025, 21(2), e1012745. eISSN 1553-7358. Verfügbar unter: doi: 10.1371/journal.pcbi.1012745BibTex
@article{Musella2025-02-11ENQUI-72821, title={ENQUIRE automatically reconstructs, expands, and drives enrichment analysis of gene and Mesh co-occurrence networks from context-specific biomedical literature}, year={2025}, doi={10.1371/journal.pcbi.1012745}, number={2}, volume={21}, journal={PLOS Computational Biology}, author={Musella, Luca and Afonso Castro, Alejandro and Lai, Xin and Widmann, Max and Vera, Julio}, note={Article Number: e1012745} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/72821"> <dc:contributor>Vera, Julio</dc:contributor> <dc:contributor>Widmann, Max</dc:contributor> <dc:creator>Musella, Luca</dc:creator> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2025-03-31T11:05:56Z</dc:date> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/> <dc:contributor>Afonso Castro, Alejandro</dc:contributor> <dc:creator>Lai, Xin</dc:creator> <dc:contributor>Lai, Xin</dc:contributor> <dc:creator>Widmann, Max</dc:creator> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:language>eng</dc:language> <dc:rights>Attribution 4.0 International</dc:rights> <dcterms:abstract>The accelerating growth of scientific literature overwhelms our capacity to manually distil complex phenomena like molecular networks linked to diseases. Moreover, biases in biomedical research and database annotation limit our interpretation of facts and generation of hypotheses. ENQUIRE (Expanding Networks by Querying Unexpectedly Inter-Related Entities) offers a time- and resource-efficient alternative to manual literature curation and database mining. ENQUIRE reconstructs and expands co-occurrence networks of genes and biomedical ontologies from user-selected input corpora and network-inferred PubMed queries. Its modest resource usage and the integration of text mining, automatic querying, and network-based statistics mitigating literature biases makes ENQUIRE unique in its broad-scope applications. For example, ENQUIRE can generate co-occurrence gene networks that reflect high-confidence, functional networks. When tested on case studies spanning cancer, cell differentiation, and immunity, ENQUIRE identified interlinked genes and enriched pathways unique to each topic, thereby preserving their underlying context specificity. ENQUIRE supports biomedical researchers by easing literature annotation, boosting hypothesis formulation, and facilitating the identification of molecular targets for subsequent experimentation.</dcterms:abstract> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2025-03-31T11:05:56Z</dcterms:available> <dc:creator>Vera, Julio</dc:creator> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/72821"/> <dc:contributor>Musella, Luca</dc:contributor> <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by/4.0/"/> <dc:creator>Afonso Castro, Alejandro</dc:creator> <dcterms:issued>2025-02-11</dcterms:issued> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/72821/1/Musella_2-138x9xlw07x877.pdf"/> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/72821/1/Musella_2-138x9xlw07x877.pdf"/> <dcterms:title>ENQUIRE automatically reconstructs, expands, and drives enrichment analysis of gene and Mesh co-occurrence networks from context-specific biomedical literature</dcterms:title> </rdf:Description> </rdf:RDF>