Publikation:

ENQUIRE automatically reconstructs, expands, and drives enrichment analysis of gene and Mesh co-occurrence networks from context-specific biomedical literature

Lade...
Vorschaubild

Dateien

Musella_2-138x9xlw07x877.pdf
Musella_2-138x9xlw07x877.pdfGröße: 3.13 MBDownloads: 3

Datum

2025

Autor:innen

Musella, Luca
Afonso Castro, Alejandro
Lai, Xin
Vera, Julio

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

ArXiv-ID

Internationale Patentnummer

Link zur Lizenz

Angaben zur Forschungsförderung

Institutionen der Bundesrepublik Deutschland: 01ZX1905A
Institutionen der Bundesrepublik Deutschland: 01ZX2205A
Institutionen der Bundesrepublik Deutschland: 161L0244A
Institutionen der Bundesrepublik Deutschland: 16LW0338K

Projekt

Open Access-Veröffentlichung
Open Access Gold
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

PLOS Computational Biology. Public Library of Science (PLoS). 2025, 21(2), e1012745. eISSN 1553-7358. Verfügbar unter: doi: 10.1371/journal.pcbi.1012745

Zusammenfassung

The accelerating growth of scientific literature overwhelms our capacity to manually distil complex phenomena like molecular networks linked to diseases. Moreover, biases in biomedical research and database annotation limit our interpretation of facts and generation of hypotheses. ENQUIRE (Expanding Networks by Querying Unexpectedly Inter-Related Entities) offers a time- and resource-efficient alternative to manual literature curation and database mining. ENQUIRE reconstructs and expands co-occurrence networks of genes and biomedical ontologies from user-selected input corpora and network-inferred PubMed queries. Its modest resource usage and the integration of text mining, automatic querying, and network-based statistics mitigating literature biases makes ENQUIRE unique in its broad-scope applications. For example, ENQUIRE can generate co-occurrence gene networks that reflect high-confidence, functional networks. When tested on case studies spanning cancer, cell differentiation, and immunity, ENQUIRE identified interlinked genes and enriched pathways unique to each topic, thereby preserving their underlying context specificity. ENQUIRE supports biomedical researchers by easing literature annotation, boosting hypothesis formulation, and facilitating the identification of molecular targets for subsequent experimentation.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
570 Biowissenschaften, Biologie

Schlagwörter

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690MUSELLA, Luca, Alejandro AFONSO CASTRO, Xin LAI, Max WIDMANN, Julio VERA, 2025. ENQUIRE automatically reconstructs, expands, and drives enrichment analysis of gene and Mesh co-occurrence networks from context-specific biomedical literature. In: PLOS Computational Biology. Public Library of Science (PLoS). 2025, 21(2), e1012745. eISSN 1553-7358. Verfügbar unter: doi: 10.1371/journal.pcbi.1012745
BibTex
@article{Musella2025-02-11ENQUI-72821,
  title={ENQUIRE automatically reconstructs, expands, and drives enrichment analysis of gene and Mesh co-occurrence networks from context-specific biomedical literature},
  year={2025},
  doi={10.1371/journal.pcbi.1012745},
  number={2},
  volume={21},
  journal={PLOS Computational Biology},
  author={Musella, Luca and Afonso Castro, Alejandro and Lai, Xin and Widmann, Max and Vera, Julio},
  note={Article Number: e1012745}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/72821">
    <dc:contributor>Vera, Julio</dc:contributor>
    <dc:contributor>Widmann, Max</dc:contributor>
    <dc:creator>Musella, Luca</dc:creator>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2025-03-31T11:05:56Z</dc:date>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/>
    <dc:contributor>Afonso Castro, Alejandro</dc:contributor>
    <dc:creator>Lai, Xin</dc:creator>
    <dc:contributor>Lai, Xin</dc:contributor>
    <dc:creator>Widmann, Max</dc:creator>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:language>eng</dc:language>
    <dc:rights>Attribution 4.0 International</dc:rights>
    <dcterms:abstract>The accelerating growth of scientific literature overwhelms our capacity to manually distil complex phenomena like molecular networks linked to diseases. Moreover, biases in biomedical research and database annotation limit our interpretation of facts and generation of hypotheses. ENQUIRE (Expanding Networks by Querying Unexpectedly Inter-Related Entities) offers a time- and resource-efficient alternative to manual literature curation and database mining. ENQUIRE reconstructs and expands co-occurrence networks of genes and biomedical ontologies from user-selected input corpora and network-inferred PubMed queries. Its modest resource usage and the integration of text mining, automatic querying, and network-based statistics mitigating literature biases makes ENQUIRE unique in its broad-scope applications. For example, ENQUIRE can generate co-occurrence gene networks that reflect high-confidence, functional networks. When tested on case studies spanning cancer, cell differentiation, and immunity, ENQUIRE identified interlinked genes and enriched pathways unique to each topic, thereby preserving their underlying context specificity. ENQUIRE supports biomedical researchers by easing literature annotation, boosting hypothesis formulation, and facilitating the identification of molecular targets for subsequent experimentation.</dcterms:abstract>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2025-03-31T11:05:56Z</dcterms:available>
    <dc:creator>Vera, Julio</dc:creator>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/72821"/>
    <dc:contributor>Musella, Luca</dc:contributor>
    <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by/4.0/"/>
    <dc:creator>Afonso Castro, Alejandro</dc:creator>
    <dcterms:issued>2025-02-11</dcterms:issued>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/72821/1/Musella_2-138x9xlw07x877.pdf"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/72821/1/Musella_2-138x9xlw07x877.pdf"/>
    <dcterms:title>ENQUIRE automatically reconstructs, expands, and drives enrichment analysis of gene and Mesh co-occurrence networks from context-specific biomedical literature</dcterms:title>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Ja
Diese Publikation teilen