Visual Integration of Meteorological and Sensor Data for Identifying Suspicious Company Behavior
Visual Integration of Meteorological and Sensor Data for Identifying Suspicious Company Behavior
No Thumbnail Available
Files
There are no files associated with this item.
Date
2017
Editors
Journal ISSN
Electronic ISSN
ISBN
Bibliographical data
Publisher
Series
DOI (citable link)
International patent number
Link to the license
oops
EU project number
Project
Open Access publication
Collections
Title in another language
Publication type
Contribution to a conference collection
Publication status
Published
Published in
2017 IEEE Conference on Visual Analytics Science and Technology (VAST), Proceedings / Fisher, Brian; Liu, Shixia; Schreck, Tobias (ed.). - Piscataway, NJ : IEEE, 2017. - pp. 225-226. - ISBN 978-1-5386-3163-8
Abstract
We present an approach developed in course of the VAST 2017 Mini-Challenge 2. To help the ornithologist Mitch to investigate the noxious gases emitted by the four companies south of the nature preserve, we employ a combination of interactive visualizations that allow for an exploration of the data. In this paper, we present our visual-interactive approach for analyzing suspicious patterns in the data. By taking the wind data into consideration, as well, our approach allows the retrieval of patterns in the chemical releases and identify key polluters.
Summary in another language
Subject (DDC)
004 Computer Science
Keywords
Conference
2017 IEEE Conference on Visual Analytics Science and Technology (VAST), Oct 3, 2017 - Oct 6, 2017, Phoenix, AZ
Review
undefined / . - undefined, undefined. - (undefined; undefined)
Cite This
ISO 690
SEEBACHER, Daniel, Bruno SCHNEIDER, Michael BEHRISCH, 2017. Visual Integration of Meteorological and Sensor Data for Identifying Suspicious Company Behavior. 2017 IEEE Conference on Visual Analytics Science and Technology (VAST). Phoenix, AZ, Oct 3, 2017 - Oct 6, 2017. In: FISHER, Brian, ed., Shixia LIU, ed., Tobias SCHRECK, ed.. 2017 IEEE Conference on Visual Analytics Science and Technology (VAST), Proceedings. Piscataway, NJ:IEEE, pp. 225-226. ISBN 978-1-5386-3163-8. Available under: doi: 10.1109/VAST.2017.8585436BibTex
@inproceedings{Seebacher2017Visua-44808, year={2017}, doi={10.1109/VAST.2017.8585436}, title={Visual Integration of Meteorological and Sensor Data for Identifying Suspicious Company Behavior}, isbn={978-1-5386-3163-8}, publisher={IEEE}, address={Piscataway, NJ}, booktitle={2017 IEEE Conference on Visual Analytics Science and Technology (VAST), Proceedings}, pages={225--226}, editor={Fisher, Brian and Liu, Shixia and Schreck, Tobias}, author={Seebacher, Daniel and Schneider, Bruno and Behrisch, Michael} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/44808"> <dcterms:abstract xml:lang="eng">We present an approach developed in course of the VAST 2017 Mini-Challenge 2. To help the ornithologist Mitch to investigate the noxious gases emitted by the four companies south of the nature preserve, we employ a combination of interactive visualizations that allow for an exploration of the data. In this paper, we present our visual-interactive approach for analyzing suspicious patterns in the data. By taking the wind data into consideration, as well, our approach allows the retrieval of patterns in the chemical releases and identify key polluters.</dcterms:abstract> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:language>eng</dc:language> <foaf:homepage rdf:resource="http://localhost:8080/"/> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/44808"/> <dcterms:issued>2017</dcterms:issued> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:contributor>Behrisch, Michael</dc:contributor> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dcterms:title>Visual Integration of Meteorological and Sensor Data for Identifying Suspicious Company Behavior</dcterms:title> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2019-02-01T13:38:01Z</dc:date> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2019-02-01T13:38:01Z</dcterms:available> <dc:creator>Behrisch, Michael</dc:creator> <dc:creator>Schneider, Bruno</dc:creator> <dc:creator>Seebacher, Daniel</dc:creator> <dc:contributor>Seebacher, Daniel</dc:contributor> <dc:contributor>Schneider, Bruno</dc:contributor> </rdf:Description> </rdf:RDF>
Internal note
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Examination date of dissertation
Method of financing
Comment on publication
Alliance license
Corresponding Authors der Uni Konstanz vorhanden
International Co-Authors
Bibliography of Konstanz
Yes