Publikation:

Visual Integration of Meteorological and Sensor Data for Identifying Suspicious Company Behavior

Lade...
Vorschaubild

Dateien

Zu diesem Dokument gibt es keine Dateien.

Datum

2017

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

URI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Beitrag zu einem Konferenzband
Publikationsstatus
Published

Erschienen in

FISHER, Brian, ed., Shixia LIU, ed., Tobias SCHRECK, ed.. 2017 IEEE Conference on Visual Analytics Science and Technology (VAST), Proceedings. Piscataway, NJ: IEEE, 2017, pp. 225-226. ISBN 978-1-5386-3163-8. Available under: doi: 10.1109/VAST.2017.8585436

Zusammenfassung

We present an approach developed in course of the VAST 2017 Mini-Challenge 2. To help the ornithologist Mitch to investigate the noxious gases emitted by the four companies south of the nature preserve, we employ a combination of interactive visualizations that allow for an exploration of the data. In this paper, we present our visual-interactive approach for analyzing suspicious patterns in the data. By taking the wind data into consideration, as well, our approach allows the retrieval of patterns in the chemical releases and identify key polluters.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
004 Informatik

Schlagwörter

Konferenz

2017 IEEE Conference on Visual Analytics Science and Technology (VAST), 3. Okt. 2017 - 6. Okt. 2017, Phoenix, AZ
Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690SEEBACHER, Daniel, Bruno SCHNEIDER, Michael BEHRISCH, 2017. Visual Integration of Meteorological and Sensor Data for Identifying Suspicious Company Behavior. 2017 IEEE Conference on Visual Analytics Science and Technology (VAST). Phoenix, AZ, 3. Okt. 2017 - 6. Okt. 2017. In: FISHER, Brian, ed., Shixia LIU, ed., Tobias SCHRECK, ed.. 2017 IEEE Conference on Visual Analytics Science and Technology (VAST), Proceedings. Piscataway, NJ: IEEE, 2017, pp. 225-226. ISBN 978-1-5386-3163-8. Available under: doi: 10.1109/VAST.2017.8585436
BibTex
@inproceedings{Seebacher2017Visua-44808,
  year={2017},
  doi={10.1109/VAST.2017.8585436},
  title={Visual Integration of Meteorological and Sensor Data for Identifying Suspicious Company Behavior},
  isbn={978-1-5386-3163-8},
  publisher={IEEE},
  address={Piscataway, NJ},
  booktitle={2017 IEEE Conference on Visual Analytics Science and Technology (VAST), Proceedings},
  pages={225--226},
  editor={Fisher, Brian and Liu, Shixia and Schreck, Tobias},
  author={Seebacher, Daniel and Schneider, Bruno and Behrisch, Michael}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/44808">
    <dcterms:abstract xml:lang="eng">We present an approach developed in course of the VAST 2017 Mini-Challenge 2. To help the ornithologist Mitch to investigate the noxious gases emitted by the four companies south of the nature preserve, we employ a combination of interactive visualizations that allow for an exploration of the data. In this paper, we present our visual-interactive approach for analyzing suspicious patterns in the data. By taking the wind data into consideration, as well, our approach allows the retrieval of patterns in the chemical releases and identify key polluters.</dcterms:abstract>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:language>eng</dc:language>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/44808"/>
    <dcterms:issued>2017</dcterms:issued>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:contributor>Behrisch, Michael</dc:contributor>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dcterms:title>Visual Integration of Meteorological and Sensor Data for Identifying Suspicious Company Behavior</dcterms:title>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2019-02-01T13:38:01Z</dc:date>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2019-02-01T13:38:01Z</dcterms:available>
    <dc:creator>Behrisch, Michael</dc:creator>
    <dc:creator>Schneider, Bruno</dc:creator>
    <dc:creator>Seebacher, Daniel</dc:creator>
    <dc:contributor>Seebacher, Daniel</dc:contributor>
    <dc:contributor>Schneider, Bruno</dc:contributor>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen