Publikation:

Automatic Amharic Part of Speech Tagging (AAPOST) : A Comparative Approach Using Bidirectional LSTM and Conditional Random Fields (CRF) Methods

Lade...
Vorschaubild

Dateien

Birhanie_2-13uilhq9epned7.pdf
Birhanie_2-13uilhq9epned7.pdfGröße: 258.54 KBDownloads: 282

Datum

2020

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Green
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Beitrag zu einem Konferenzband
Publikationsstatus
Published

Erschienen in

GABBIYE HABTU, Nigus, ed., Delele Worku AYELE, ed., Solomon Workneh FANTA, ed. and others. Advances of Science and Techology : 7th EAI International Conference, ICAST 2019, Proceedings. Cham: Springer, 2020, pp. 512-521. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering (LNICST). 308. ISSN 1867-8211. eISSN 1867-822X. ISBN 978-3-030-43689-6. Available under: doi: 10.1007/978-3-030-43690-2_37

Zusammenfassung

Part of speech (POS) tagging is an initial task for many natural language applications. POS tagging for Amharic is in its infancy. This study contributes towards the improvement of Amharic POS tagging by experimenting using Deep Learning and Conditional Random Fields (CRF) approaches. Word embedding is integrated into the system to enhance performance. The model was applied to an Amharic news corpus tagged into 11 major part of speeches and achieved accuracies of 91.12% and 90% for the Bidirectional LSTM and CRF methods respectively. The result shows that the Bidirectional LSTM approach performance is better than the CRF method. More enhancement is expected in the future by increasing the size and diversity of Amharic corpus.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
400 Sprachwissenschaft, Linguistik

Schlagwörter

Amharic, POS, BI-LSTM, CRF

Konferenz

Advances of Science and Technology : 7th EAI International Conference, ICAST 2019, 2. Aug. 2019 - 4. Aug. 2019, Bahir Dar, Ethiopia
Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690BIRHANIE, Worku Kelemework, Miriam BUTT, 2020. Automatic Amharic Part of Speech Tagging (AAPOST) : A Comparative Approach Using Bidirectional LSTM and Conditional Random Fields (CRF) Methods. Advances of Science and Technology : 7th EAI International Conference, ICAST 2019. Bahir Dar, Ethiopia, 2. Aug. 2019 - 4. Aug. 2019. In: GABBIYE HABTU, Nigus, ed., Delele Worku AYELE, ed., Solomon Workneh FANTA, ed. and others. Advances of Science and Techology : 7th EAI International Conference, ICAST 2019, Proceedings. Cham: Springer, 2020, pp. 512-521. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering (LNICST). 308. ISSN 1867-8211. eISSN 1867-822X. ISBN 978-3-030-43689-6. Available under: doi: 10.1007/978-3-030-43690-2_37
BibTex
@inproceedings{Birhanie2020Autom-59690,
  year={2020},
  doi={10.1007/978-3-030-43690-2_37},
  title={Automatic Amharic Part of Speech Tagging (AAPOST) : A Comparative Approach Using Bidirectional LSTM and Conditional Random Fields (CRF) Methods},
  number={308},
  isbn={978-3-030-43689-6},
  issn={1867-8211},
  publisher={Springer},
  address={Cham},
  series={Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering (LNICST)},
  booktitle={Advances of Science and Techology : 7th EAI International Conference, ICAST 2019, Proceedings},
  pages={512--521},
  editor={Gabbiye Habtu, Nigus and Ayele, Delele Worku and Fanta, Solomon Workneh},
  author={Birhanie, Worku Kelemework and Butt, Miriam}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/59690">
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/59690/1/Birhanie_2-13uilhq9epned7.pdf"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2023-01-12T11:52:49Z</dcterms:available>
    <dc:rights>terms-of-use</dc:rights>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:contributor>Butt, Miriam</dc:contributor>
    <dc:creator>Birhanie, Worku Kelemework</dc:creator>
    <dcterms:issued>2020</dcterms:issued>
    <dcterms:title>Automatic Amharic Part of Speech Tagging (AAPOST) : A Comparative Approach Using Bidirectional LSTM and Conditional Random Fields (CRF) Methods</dcterms:title>
    <dc:language>eng</dc:language>
    <dc:contributor>Birhanie, Worku Kelemework</dc:contributor>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/45"/>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/59690"/>
    <dc:creator>Butt, Miriam</dc:creator>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/59690/1/Birhanie_2-13uilhq9epned7.pdf"/>
    <dcterms:abstract xml:lang="eng">Part of speech (POS) tagging is an initial task for many natural language applications. POS tagging for Amharic is in its infancy. This study contributes towards the improvement of Amharic POS tagging by experimenting using Deep Learning and Conditional Random Fields (CRF) approaches. Word embedding is integrated into the system to enhance performance. The model was applied to an Amharic news corpus tagged into 11 major part of speeches and achieved accuracies of 91.12% and 90% for the Bidirectional LSTM and CRF methods respectively. The result shows that the Bidirectional LSTM approach performance is better than the CRF method. More enhancement is expected in the future by increasing the size and diversity of Amharic corpus.</dcterms:abstract>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/45"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2023-01-12T11:52:49Z</dc:date>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen