Publikation: Automatic Amharic Part of Speech Tagging (AAPOST) : A Comparative Approach Using Bidirectional LSTM and Conditional Random Fields (CRF) Methods
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
Part of speech (POS) tagging is an initial task for many natural language applications. POS tagging for Amharic is in its infancy. This study contributes towards the improvement of Amharic POS tagging by experimenting using Deep Learning and Conditional Random Fields (CRF) approaches. Word embedding is integrated into the system to enhance performance. The model was applied to an Amharic news corpus tagged into 11 major part of speeches and achieved accuracies of 91.12% and 90% for the Bidirectional LSTM and CRF methods respectively. The result shows that the Bidirectional LSTM approach performance is better than the CRF method. More enhancement is expected in the future by increasing the size and diversity of Amharic corpus.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
BIRHANIE, Worku Kelemework, Miriam BUTT, 2020. Automatic Amharic Part of Speech Tagging (AAPOST) : A Comparative Approach Using Bidirectional LSTM and Conditional Random Fields (CRF) Methods. Advances of Science and Technology : 7th EAI International Conference, ICAST 2019. Bahir Dar, Ethiopia, 2. Aug. 2019 - 4. Aug. 2019. In: GABBIYE HABTU, Nigus, ed., Delele Worku AYELE, ed., Solomon Workneh FANTA, ed. and others. Advances of Science and Techology : 7th EAI International Conference, ICAST 2019, Proceedings. Cham: Springer, 2020, pp. 512-521. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering (LNICST). 308. ISSN 1867-8211. eISSN 1867-822X. ISBN 978-3-030-43689-6. Available under: doi: 10.1007/978-3-030-43690-2_37BibTex
@inproceedings{Birhanie2020Autom-59690, year={2020}, doi={10.1007/978-3-030-43690-2_37}, title={Automatic Amharic Part of Speech Tagging (AAPOST) : A Comparative Approach Using Bidirectional LSTM and Conditional Random Fields (CRF) Methods}, number={308}, isbn={978-3-030-43689-6}, issn={1867-8211}, publisher={Springer}, address={Cham}, series={Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering (LNICST)}, booktitle={Advances of Science and Techology : 7th EAI International Conference, ICAST 2019, Proceedings}, pages={512--521}, editor={Gabbiye Habtu, Nigus and Ayele, Delele Worku and Fanta, Solomon Workneh}, author={Birhanie, Worku Kelemework and Butt, Miriam} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/59690"> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/59690/1/Birhanie_2-13uilhq9epned7.pdf"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2023-01-12T11:52:49Z</dcterms:available> <dc:rights>terms-of-use</dc:rights> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:contributor>Butt, Miriam</dc:contributor> <dc:creator>Birhanie, Worku Kelemework</dc:creator> <dcterms:issued>2020</dcterms:issued> <dcterms:title>Automatic Amharic Part of Speech Tagging (AAPOST) : A Comparative Approach Using Bidirectional LSTM and Conditional Random Fields (CRF) Methods</dcterms:title> <dc:language>eng</dc:language> <dc:contributor>Birhanie, Worku Kelemework</dc:contributor> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/45"/> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/59690"/> <dc:creator>Butt, Miriam</dc:creator> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/59690/1/Birhanie_2-13uilhq9epned7.pdf"/> <dcterms:abstract xml:lang="eng">Part of speech (POS) tagging is an initial task for many natural language applications. POS tagging for Amharic is in its infancy. This study contributes towards the improvement of Amharic POS tagging by experimenting using Deep Learning and Conditional Random Fields (CRF) approaches. Word embedding is integrated into the system to enhance performance. The model was applied to an Amharic news corpus tagged into 11 major part of speeches and achieved accuracies of 91.12% and 90% for the Bidirectional LSTM and CRF methods respectively. The result shows that the Bidirectional LSTM approach performance is better than the CRF method. More enhancement is expected in the future by increasing the size and diversity of Amharic corpus.</dcterms:abstract> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/45"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2023-01-12T11:52:49Z</dc:date> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> </rdf:Description> </rdf:RDF>