Publikation:

Autonomous reconstruction of unknown indoor scenes guided by time-varying tensor fields

Lade...
Vorschaubild

Dateien

Xu_2-146engsrqliox1.pdf
Xu_2-146engsrqliox1.pdfGröße: 2.25 MBDownloads: 974

Datum

2017

Autor:innen

Xu, Kai
Zheng, Lintao
Yan, Zihao
Yan, Guohang
Zhang, Eugene
Niessner, Matthias
Cohen-Or, Daniel
Huang, Hui

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Green
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

ACM Transactions on Graphics. 2017, 36(6), 202. ISSN 0730-0301. eISSN 1557-7368. Available under: doi: 10.1145/3130800.3130812

Zusammenfassung

Autonomous reconstruction of unknown scenes by a mobile robot inherently poses the question of balancing between exploration efficacy and reconstruction quality. We present a navigation-by-reconstruction approach to address this question, where moving paths of the robot are planned to account for both global efficiency for fast exploration and local smoothness to obtain high-quality scans. An RGB-D camera, attached to the robot arm, is dictated by the desired reconstruction quality as well as the movement of the robot itself. Our key idea is to harness a time-varying tensor field to guide robot movement, and then solve for 3D camera control under the constraint of the 2D robot moving path. The tensor field is updated in real time, conforming to the progressively reconstructed scene. We show that tensor fields are well suited for guiding autonomous scanning for two reasons: first, they contain sparse and controllable singularities that allow generating a locally smooth robot path, and second, their topological structure can be used for globally efficient path routing within a partially reconstructed scene. We have conducted numerous tests with a mobile robot, and demonstrate that our method leads to a smooth exploration and high-quality reconstruction of unknown indoor scenes.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
004 Informatik

Schlagwörter

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690XU, Kai, Lintao ZHENG, Zihao YAN, Guohang YAN, Eugene ZHANG, Matthias NIESSNER, Oliver DEUSSEN, Daniel COHEN-OR, Hui HUANG, 2017. Autonomous reconstruction of unknown indoor scenes guided by time-varying tensor fields. In: ACM Transactions on Graphics. 2017, 36(6), 202. ISSN 0730-0301. eISSN 1557-7368. Available under: doi: 10.1145/3130800.3130812
BibTex
@article{Xu2017-11-20Auton-41076,
  year={2017},
  doi={10.1145/3130800.3130812},
  title={Autonomous reconstruction of unknown indoor scenes guided by time-varying tensor fields},
  number={6},
  volume={36},
  issn={0730-0301},
  journal={ACM Transactions on Graphics},
  author={Xu, Kai and Zheng, Lintao and Yan, Zihao and Yan, Guohang and Zhang, Eugene and Niessner, Matthias and Deussen, Oliver and Cohen-Or, Daniel and Huang, Hui},
  note={Article Number: 202}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41076">
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/41076"/>
    <dc:contributor>Yan, Guohang</dc:contributor>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/41076/1/Xu_2-146engsrqliox1.pdf"/>
    <dc:creator>Niessner, Matthias</dc:creator>
    <dc:contributor>Niessner, Matthias</dc:contributor>
    <dc:creator>Xu, Kai</dc:creator>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2018-01-16T14:37:52Z</dc:date>
    <dcterms:abstract xml:lang="eng">Autonomous reconstruction of unknown scenes by a mobile robot inherently poses the question of balancing between exploration efficacy and reconstruction quality. We present a navigation-by-reconstruction approach to address this question, where moving paths of the robot are planned to account for both global efficiency for fast exploration and local smoothness to obtain high-quality scans. An RGB-D camera, attached to the robot arm, is dictated by the desired reconstruction quality as well as the movement of the robot itself. Our key idea is to harness a time-varying tensor field to guide robot movement, and then solve for 3D camera control under the constraint of the 2D robot moving path. The tensor field is updated in real time, conforming to the progressively reconstructed scene. We show that tensor fields are well suited for guiding autonomous scanning for two reasons: first, they contain sparse and controllable singularities that allow generating a locally smooth robot path, and second, their topological structure can be used for globally efficient path routing within a partially reconstructed scene. We have conducted numerous tests with a mobile robot, and demonstrate that our method leads to a smooth exploration and high-quality reconstruction of unknown indoor scenes.</dcterms:abstract>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2018-01-16T14:37:52Z</dcterms:available>
    <dc:rights>terms-of-use</dc:rights>
    <dc:language>eng</dc:language>
    <dc:contributor>Zheng, Lintao</dc:contributor>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dcterms:issued>2017-11-20</dcterms:issued>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/41076/1/Xu_2-146engsrqliox1.pdf"/>
    <dc:creator>Yan, Zihao</dc:creator>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:creator>Zhang, Eugene</dc:creator>
    <dc:creator>Huang, Hui</dc:creator>
    <dc:contributor>Yan, Zihao</dc:contributor>
    <dc:contributor>Xu, Kai</dc:contributor>
    <dc:contributor>Deussen, Oliver</dc:contributor>
    <dc:creator>Cohen-Or, Daniel</dc:creator>
    <dc:creator>Yan, Guohang</dc:creator>
    <dc:creator>Deussen, Oliver</dc:creator>
    <dc:contributor>Huang, Hui</dc:contributor>
    <dcterms:title>Autonomous reconstruction of unknown indoor scenes guided by time-varying tensor fields</dcterms:title>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dc:contributor>Zhang, Eugene</dc:contributor>
    <dc:contributor>Cohen-Or, Daniel</dc:contributor>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:creator>Zheng, Lintao</dc:creator>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen