Publikation: Autonomous reconstruction of unknown indoor scenes guided by time-varying tensor fields
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
Autonomous reconstruction of unknown scenes by a mobile robot inherently poses the question of balancing between exploration efficacy and reconstruction quality. We present a navigation-by-reconstruction approach to address this question, where moving paths of the robot are planned to account for both global efficiency for fast exploration and local smoothness to obtain high-quality scans. An RGB-D camera, attached to the robot arm, is dictated by the desired reconstruction quality as well as the movement of the robot itself. Our key idea is to harness a time-varying tensor field to guide robot movement, and then solve for 3D camera control under the constraint of the 2D robot moving path. The tensor field is updated in real time, conforming to the progressively reconstructed scene. We show that tensor fields are well suited for guiding autonomous scanning for two reasons: first, they contain sparse and controllable singularities that allow generating a locally smooth robot path, and second, their topological structure can be used for globally efficient path routing within a partially reconstructed scene. We have conducted numerous tests with a mobile robot, and demonstrate that our method leads to a smooth exploration and high-quality reconstruction of unknown indoor scenes.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
XU, Kai, Lintao ZHENG, Zihao YAN, Guohang YAN, Eugene ZHANG, Matthias NIESSNER, Oliver DEUSSEN, Daniel COHEN-OR, Hui HUANG, 2017. Autonomous reconstruction of unknown indoor scenes guided by time-varying tensor fields. In: ACM Transactions on Graphics. 2017, 36(6), 202. ISSN 0730-0301. eISSN 1557-7368. Available under: doi: 10.1145/3130800.3130812BibTex
@article{Xu2017-11-20Auton-41076, year={2017}, doi={10.1145/3130800.3130812}, title={Autonomous reconstruction of unknown indoor scenes guided by time-varying tensor fields}, number={6}, volume={36}, issn={0730-0301}, journal={ACM Transactions on Graphics}, author={Xu, Kai and Zheng, Lintao and Yan, Zihao and Yan, Guohang and Zhang, Eugene and Niessner, Matthias and Deussen, Oliver and Cohen-Or, Daniel and Huang, Hui}, note={Article Number: 202} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41076"> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/41076"/> <dc:contributor>Yan, Guohang</dc:contributor> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/41076/1/Xu_2-146engsrqliox1.pdf"/> <dc:creator>Niessner, Matthias</dc:creator> <dc:contributor>Niessner, Matthias</dc:contributor> <dc:creator>Xu, Kai</dc:creator> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2018-01-16T14:37:52Z</dc:date> <dcterms:abstract xml:lang="eng">Autonomous reconstruction of unknown scenes by a mobile robot inherently poses the question of balancing between exploration efficacy and reconstruction quality. We present a navigation-by-reconstruction approach to address this question, where moving paths of the robot are planned to account for both global efficiency for fast exploration and local smoothness to obtain high-quality scans. An RGB-D camera, attached to the robot arm, is dictated by the desired reconstruction quality as well as the movement of the robot itself. Our key idea is to harness a time-varying tensor field to guide robot movement, and then solve for 3D camera control under the constraint of the 2D robot moving path. The tensor field is updated in real time, conforming to the progressively reconstructed scene. We show that tensor fields are well suited for guiding autonomous scanning for two reasons: first, they contain sparse and controllable singularities that allow generating a locally smooth robot path, and second, their topological structure can be used for globally efficient path routing within a partially reconstructed scene. We have conducted numerous tests with a mobile robot, and demonstrate that our method leads to a smooth exploration and high-quality reconstruction of unknown indoor scenes.</dcterms:abstract> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2018-01-16T14:37:52Z</dcterms:available> <dc:rights>terms-of-use</dc:rights> <dc:language>eng</dc:language> <dc:contributor>Zheng, Lintao</dc:contributor> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dcterms:issued>2017-11-20</dcterms:issued> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/41076/1/Xu_2-146engsrqliox1.pdf"/> <dc:creator>Yan, Zihao</dc:creator> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:creator>Zhang, Eugene</dc:creator> <dc:creator>Huang, Hui</dc:creator> <dc:contributor>Yan, Zihao</dc:contributor> <dc:contributor>Xu, Kai</dc:contributor> <dc:contributor>Deussen, Oliver</dc:contributor> <dc:creator>Cohen-Or, Daniel</dc:creator> <dc:creator>Yan, Guohang</dc:creator> <dc:creator>Deussen, Oliver</dc:creator> <dc:contributor>Huang, Hui</dc:contributor> <dcterms:title>Autonomous reconstruction of unknown indoor scenes guided by time-varying tensor fields</dcterms:title> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dc:contributor>Zhang, Eugene</dc:contributor> <dc:contributor>Cohen-Or, Daniel</dc:contributor> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:creator>Zheng, Lintao</dc:creator> </rdf:Description> </rdf:RDF>