Publikation: Phase separation in suspensions of colloids, polymers and nanoparticles : role of solvent quality, physical mesh, and nonlocal entropic repulsion
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
Analytic and numerical microscopic integral equation theory for polymer particle suspensions is employed to investigate the dependence of fluid fluid phase separation on size asymmetry, solvent quality, and higher order polymer polymer interactions. For athermal good solvents, our prior novel prediction of enhanced miscibility with increasing (decreasing) polymer (particle) size is found not to be fundamentally tied to physical mesh formation or strong polymer-induced colloid clustering. Rather, the key is a proper treatment of the polymer second virial coefficient, which is sensitive to how chains organize in the empty space between particles. The origin of the qualitative error made by classic mean-field theories for the shifting of phase boundaries with size asymmetry is established. The phase separation behavior predicted by integral equation theory for ideal polymers is completely different than the athermal case for all size asymmetries and particle volume fractions, thereby establishing the remarkably large consequences of polymer polymer repulsions. For large polymers or small nanoparticles under ideal solvent conditions, the suspension miscibility worsens with increasing size asymmetry, opposite to the athermal solvent behavior. However, over a significant range of intermediate size asymmetries the spinodal curves are either nearly constant, or display a nonmonotonic shifting, as size asymmetry is varied. Higher order contributions in polymer concentration modestly stabilize the miscible phase in both athermal and ideal solvents.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
CHEN, Yeng-Long, Kenneth S. SCHWEIZER, Matthias FUCHS, 2003. Phase separation in suspensions of colloids, polymers and nanoparticles : role of solvent quality, physical mesh, and nonlocal entropic repulsion. In: Journal of Chemical Physics. 2003, 118(8), pp. 3880-3890. Available under: doi: 10.1063/1.1538600BibTex
@article{Chen2003Phase-9460, year={2003}, doi={10.1063/1.1538600}, title={Phase separation in suspensions of colloids, polymers and nanoparticles : role of solvent quality, physical mesh, and nonlocal entropic repulsion}, number={8}, volume={118}, journal={Journal of Chemical Physics}, pages={3880--3890}, author={Chen, Yeng-Long and Schweizer, Kenneth S. and Fuchs, Matthias} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/9460"> <dc:language>eng</dc:language> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/9460/1/Phase_separation_in_suspensions_of_colloids.pdf"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-24T17:57:09Z</dcterms:available> <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by-nc-nd/2.0/"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-24T17:57:09Z</dc:date> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/9460/1/Phase_separation_in_suspensions_of_colloids.pdf"/> <dc:creator>Schweizer, Kenneth S.</dc:creator> <dc:contributor>Chen, Yeng-Long</dc:contributor> <dcterms:title>Phase separation in suspensions of colloids, polymers and nanoparticles : role of solvent quality, physical mesh, and nonlocal entropic repulsion</dcterms:title> <dc:format>application/pdf</dc:format> <dcterms:bibliographicCitation>First publ. in: Journal of Chemical Physics 118 (2003), 8, pp. 3880-3890</dcterms:bibliographicCitation> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:creator>Chen, Yeng-Long</dc:creator> <dc:contributor>Fuchs, Matthias</dc:contributor> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41"/> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/9460"/> <dcterms:abstract xml:lang="eng">Analytic and numerical microscopic integral equation theory for polymer particle suspensions is employed to investigate the dependence of fluid fluid phase separation on size asymmetry, solvent quality, and higher order polymer polymer interactions. For athermal good solvents, our prior novel prediction of enhanced miscibility with increasing (decreasing) polymer (particle) size is found not to be fundamentally tied to physical mesh formation or strong polymer-induced colloid clustering. Rather, the key is a proper treatment of the polymer second virial coefficient, which is sensitive to how chains organize in the empty space between particles. The origin of the qualitative error made by classic mean-field theories for the shifting of phase boundaries with size asymmetry is established. The phase separation behavior predicted by integral equation theory for ideal polymers is completely different than the athermal case for all size asymmetries and particle volume fractions, thereby establishing the remarkably large consequences of polymer polymer repulsions. For large polymers or small nanoparticles under ideal solvent conditions, the suspension miscibility worsens with increasing size asymmetry, opposite to the athermal solvent behavior. However, over a significant range of intermediate size asymmetries the spinodal curves are either nearly constant, or display a nonmonotonic shifting, as size asymmetry is varied. Higher order contributions in polymer concentration modestly stabilize the miscible phase in both athermal and ideal solvents.</dcterms:abstract> <dc:creator>Fuchs, Matthias</dc:creator> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41"/> <dc:contributor>Schweizer, Kenneth S.</dc:contributor> <dc:rights>Attribution-NonCommercial-NoDerivs 2.0 Generic</dc:rights> <dcterms:issued>2003</dcterms:issued> </rdf:Description> </rdf:RDF>