Publikation:

Phase separation in suspensions of colloids, polymers and nanoparticles : role of solvent quality, physical mesh, and nonlocal entropic repulsion

Lade...
Vorschaubild

Dateien

Phase_separation_in_suspensions_of_colloids.pdf
Phase_separation_in_suspensions_of_colloids.pdfGröße: 164.17 KBDownloads: 485

Datum

2003

Autor:innen

Chen, Yeng-Long
Schweizer, Kenneth S.

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

DOI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Green
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

Journal of Chemical Physics. 2003, 118(8), pp. 3880-3890. Available under: doi: 10.1063/1.1538600

Zusammenfassung

Analytic and numerical microscopic integral equation theory for polymer particle suspensions is employed to investigate the dependence of fluid fluid phase separation on size asymmetry, solvent quality, and higher order polymer polymer interactions. For athermal good solvents, our prior novel prediction of enhanced miscibility with increasing (decreasing) polymer (particle) size is found not to be fundamentally tied to physical mesh formation or strong polymer-induced colloid clustering. Rather, the key is a proper treatment of the polymer second virial coefficient, which is sensitive to how chains organize in the empty space between particles. The origin of the qualitative error made by classic mean-field theories for the shifting of phase boundaries with size asymmetry is established. The phase separation behavior predicted by integral equation theory for ideal polymers is completely different than the athermal case for all size asymmetries and particle volume fractions, thereby establishing the remarkably large consequences of polymer polymer repulsions. For large polymers or small nanoparticles under ideal solvent conditions, the suspension miscibility worsens with increasing size asymmetry, opposite to the athermal solvent behavior. However, over a significant range of intermediate size asymmetries the spinodal curves are either nearly constant, or display a nonmonotonic shifting, as size asymmetry is varied. Higher order contributions in polymer concentration modestly stabilize the miscible phase in both athermal and ideal solvents.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
530 Physik

Schlagwörter

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690CHEN, Yeng-Long, Kenneth S. SCHWEIZER, Matthias FUCHS, 2003. Phase separation in suspensions of colloids, polymers and nanoparticles : role of solvent quality, physical mesh, and nonlocal entropic repulsion. In: Journal of Chemical Physics. 2003, 118(8), pp. 3880-3890. Available under: doi: 10.1063/1.1538600
BibTex
@article{Chen2003Phase-9460,
  year={2003},
  doi={10.1063/1.1538600},
  title={Phase separation in suspensions of colloids, polymers and nanoparticles : role of solvent quality, physical mesh, and nonlocal entropic repulsion},
  number={8},
  volume={118},
  journal={Journal of Chemical Physics},
  pages={3880--3890},
  author={Chen, Yeng-Long and Schweizer, Kenneth S. and Fuchs, Matthias}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/9460">
    <dc:language>eng</dc:language>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/9460/1/Phase_separation_in_suspensions_of_colloids.pdf"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-24T17:57:09Z</dcterms:available>
    <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by-nc-nd/2.0/"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-24T17:57:09Z</dc:date>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/9460/1/Phase_separation_in_suspensions_of_colloids.pdf"/>
    <dc:creator>Schweizer, Kenneth S.</dc:creator>
    <dc:contributor>Chen, Yeng-Long</dc:contributor>
    <dcterms:title>Phase separation in suspensions of colloids, polymers and nanoparticles : role of solvent quality, physical mesh, and nonlocal entropic repulsion</dcterms:title>
    <dc:format>application/pdf</dc:format>
    <dcterms:bibliographicCitation>First publ. in: Journal of Chemical Physics 118 (2003), 8, pp. 3880-3890</dcterms:bibliographicCitation>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:creator>Chen, Yeng-Long</dc:creator>
    <dc:contributor>Fuchs, Matthias</dc:contributor>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41"/>
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/9460"/>
    <dcterms:abstract xml:lang="eng">Analytic and numerical microscopic integral equation theory for polymer particle suspensions is employed to investigate the dependence of fluid fluid phase separation on size asymmetry, solvent quality, and higher order polymer polymer interactions. For athermal good solvents, our prior novel prediction of enhanced miscibility with increasing (decreasing) polymer (particle) size is found not to be fundamentally tied to physical mesh formation or strong polymer-induced colloid clustering. Rather, the key is a proper treatment of the polymer second virial coefficient, which is sensitive to how chains organize in the empty space between particles. The origin of the qualitative error made by classic mean-field theories for the shifting of phase boundaries with size asymmetry is established. The phase separation behavior predicted by integral equation theory for ideal polymers is completely different than the athermal case for all size asymmetries and particle volume fractions, thereby establishing the remarkably large consequences of polymer polymer repulsions. For large polymers or small nanoparticles under ideal solvent conditions, the suspension miscibility worsens with increasing size asymmetry, opposite to the athermal solvent behavior. However, over a significant range of intermediate size asymmetries the spinodal curves are either nearly constant, or display a nonmonotonic shifting, as size asymmetry is varied. Higher order contributions in polymer concentration modestly stabilize the miscible phase in both athermal and ideal solvents.</dcterms:abstract>
    <dc:creator>Fuchs, Matthias</dc:creator>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41"/>
    <dc:contributor>Schweizer, Kenneth S.</dc:contributor>
    <dc:rights>Attribution-NonCommercial-NoDerivs 2.0 Generic</dc:rights>
    <dcterms:issued>2003</dcterms:issued>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Nein
Begutachtet
Diese Publikation teilen