Publikation:

On turning maneuverability in self-propelled burst-and-coast swimming

Lade...
Vorschaubild

Dateien

Chao_2-15f76o8dancfx4.pdf
Chao_2-15f76o8dancfx4.pdfGröße: 2.11 MBDownloads: 22

Datum

2024

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

DOI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Link zur Lizenz
oops

Angaben zur Forschungsförderung

Deutsche Forschungsgemeinschaft (DFG): EXC 2117-422037984

Projekt

Open Access-Veröffentlichung
Open Access Hybrid
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

Physics of Fluids. AIP Publishing. 2024, 36(11), 111918. ISSN 1070-6631. eISSN 1089-7666. Verfügbar unter: doi: 10.1063/5.0237171

Zusammenfassung

Fish have evolved remarkable underwater turning maneuverability, primarily under active control. This allows them to execute turns within confined spaces, such as during C-start rapid turning. In our study, conducted through computational fluid dynamics simulations of a self-propelled swimmer, we revealed that burst-and-coast swimming patterns can generate various turning behaviors purely through passive fluid–body interactions. The burst-and-coast swimming is characterized by the alternating tail movements between continuous undulating burst phases (bp) and non-undulating or gliding coast phases (cp). Through extensive systematic three-dimensional (3D) simulations, we found that both the burst-and-coast duty cycle—the ratio of burst duration to the total cycle duration—and the swimmer's undulation frequency inhibit turning maneuverability, which is quantified by the curvature of swimming trajectories. We also found there is an optimal Reynolds number that maximizes turning maneuverability. Further analysis suggests that the turning maneuverability is probably due to the persistent presence of the Wagner effect during burst phases and the Magnus effect during coast phases, which differs from the mechanism of actively generating lateral forces by asymmetric continuous flapping. These insights not only advance our understanding of fish locomotion control mechanisms but also provide guidelines for designing underwater robots with improved navigational capabilities.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
570 Biowissenschaften, Biologie

Schlagwörter

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690CHAO, Li-Ming, Iain D. COUZIN, Liang LI, 2024. On turning maneuverability in self-propelled burst-and-coast swimming. In: Physics of Fluids. AIP Publishing. 2024, 36(11), 111918. ISSN 1070-6631. eISSN 1089-7666. Verfügbar unter: doi: 10.1063/5.0237171
BibTex
@article{Chao2024-11-01turni-71387,
  year={2024},
  doi={10.1063/5.0237171},
  title={On turning maneuverability in self-propelled burst-and-coast swimming},
  number={11},
  volume={36},
  issn={1070-6631},
  journal={Physics of Fluids},
  author={Chao, Li-Ming and Couzin, Iain D. and Li, Liang},
  note={Article Number: 111918}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/71387">
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/71387/1/Chao_2-15f76o8dancfx4.pdf"/>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:language>eng</dc:language>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/71387/1/Chao_2-15f76o8dancfx4.pdf"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/43615"/>
    <dc:creator>Li, Liang</dc:creator>
    <dcterms:title>On turning maneuverability in self-propelled burst-and-coast swimming</dcterms:title>
    <dcterms:abstract>Fish have evolved remarkable underwater turning maneuverability, primarily under active control. This allows them to execute turns within confined spaces, such as during C-start rapid turning. In our study, conducted through computational fluid dynamics simulations of a self-propelled swimmer, we revealed that burst-and-coast swimming patterns can generate various turning behaviors purely through passive fluid–body interactions. The burst-and-coast swimming is characterized by the alternating tail movements between continuous undulating burst phases (bp) and non-undulating or gliding coast phases (cp). Through extensive systematic three-dimensional (3D) simulations, we found that both the burst-and-coast duty cycle—the ratio of burst duration to the total cycle duration—and the swimmer's undulation frequency inhibit turning maneuverability, which is quantified by the curvature of swimming trajectories. We also found there is an optimal Reynolds number that maximizes turning maneuverability. Further analysis suggests that the turning maneuverability is probably due to the persistent presence of the Wagner effect during burst phases and the Magnus effect during coast phases, which differs from the mechanism of actively generating lateral forces by asymmetric continuous flapping. These insights not only advance our understanding of fish locomotion control mechanisms but also provide guidelines for designing underwater robots with improved navigational capabilities.</dcterms:abstract>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2024-11-22T07:29:37Z</dc:date>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2024-11-22T07:29:37Z</dcterms:available>
    <dc:contributor>Couzin, Iain D.</dc:contributor>
    <dcterms:issued>2024-11-01</dcterms:issued>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/71387"/>
    <dc:creator>Couzin, Iain D.</dc:creator>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/43615"/>
    <dc:contributor>Chao, Li-Ming</dc:contributor>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/>
    <dc:contributor>Li, Liang</dc:contributor>
    <dc:creator>Chao, Li-Ming</dc:creator>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Ja
Diese Publikation teilen