Publikation:

Smooth monomial Togliatti systems of cubics

Lade...
Vorschaubild

Dateien

Zu diesem Dokument gibt es keine Dateien.

Datum

2016

Autor:innen

Miró-Roig, Rosa M.

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

URI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

Journal of Combinatorial Theory, Series A. Elsevier. 2016, 143, pp. 66-87. ISSN 0097-3165. eISSN 1096-0899. Available under: doi: 10.1016/j.jcta.2016.05.004

Zusammenfassung

The goal of this paper is to prove the conjecture stated in [6], extending and correcting a previous conjecture of Ilardi [5], and classify smooth minimal monomial Togliatti systems of cubics in any dimension.
More precisely, we classify all minimal monomial artinian ideals generated by cubics, failing the weak Lefschetz property and whose apolar cubic system defines a smooth toric variety. Equivalently, we classify all minimal monomial artinian ideals generated by cubics whose apolar cubic system defines a smooth toric variety satisfying at least a Laplace equation of order 2. Our methods rely on combinatorial properties of monomial ideals.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
510 Mathematik

Schlagwörter

Osculating space, Weak Lefschetz property, Laplace equations, Toric threefold

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690MICHALEK, Mateusz, Rosa M. MIRÓ-ROIG, 2016. Smooth monomial Togliatti systems of cubics. In: Journal of Combinatorial Theory, Series A. Elsevier. 2016, 143, pp. 66-87. ISSN 0097-3165. eISSN 1096-0899. Available under: doi: 10.1016/j.jcta.2016.05.004
BibTex
@article{Michalek2016Smoot-52340,
  year={2016},
  doi={10.1016/j.jcta.2016.05.004},
  title={Smooth monomial Togliatti systems of cubics},
  volume={143},
  issn={0097-3165},
  journal={Journal of Combinatorial Theory, Series A},
  pages={66--87},
  author={Michalek, Mateusz and Miró-Roig, Rosa M.}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/52340">
    <dcterms:abstract xml:lang="eng">The goal of this paper is to prove the conjecture stated in [6], extending and correcting a previous conjecture of Ilardi [5], and classify smooth minimal monomial Togliatti systems of cubics in any dimension.&lt;br /&gt;More precisely, we classify all minimal monomial artinian ideals generated by cubics, failing the weak Lefschetz property and whose apolar cubic system defines a smooth toric variety. Equivalently, we classify all minimal monomial artinian ideals generated by cubics whose apolar cubic system defines a smooth toric variety satisfying at least a Laplace equation of order 2. Our methods rely on combinatorial properties of monomial ideals.</dcterms:abstract>
    <dc:creator>Miró-Roig, Rosa M.</dc:creator>
    <dc:rights>terms-of-use</dc:rights>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-01-11T13:23:22Z</dc:date>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dcterms:title>Smooth monomial Togliatti systems of cubics</dcterms:title>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-01-11T13:23:22Z</dcterms:available>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/52340"/>
    <dc:creator>Michalek, Mateusz</dc:creator>
    <dc:language>eng</dc:language>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dc:contributor>Miró-Roig, Rosa M.</dc:contributor>
    <dc:contributor>Michalek, Mateusz</dc:contributor>
    <dcterms:issued>2016</dcterms:issued>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Nein
Begutachtet
Ja
Diese Publikation teilen