Publikation: Molecular Fragment Mining for Drug Discovery
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
The main task of drug discovery is to find novel bioactive molecules, i.e., chemical compounds that, for example, protect human cells against a virus. One way to support solving this task is to analyze a database of known and tested molecules in order to find structural properties of molecules that determine whether a molecule will be active or inactive, so that future chemical tests can be focused on the most promising candidates. A promising approach to this task was presented in [2]: an algorithm for finding molecular fragments that discriminate between active and inactive molecules. In this paper we review this approach as well as two extensions: a special treatment of rings and a method to find fragments with wildcards based on chemical expert knowledge.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
BORGELT, Christian, Michael R. BERTHOLD, David E. PATTERSON, 2005. Molecular Fragment Mining for Drug Discovery. In: GODO, Lluís, ed.. Symbolic and Quantitative Approaches to Reasoning with Uncertainty. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005, pp. 1002-1013. Lecture Notes in Computer Science. 3571. ISBN 978-3-540-27326-4. Available under: doi: 10.1007/11518655_84BibTex
@inproceedings{Borgelt2005Molec-24073, year={2005}, doi={10.1007/11518655_84}, title={Molecular Fragment Mining for Drug Discovery}, number={3571}, isbn={978-3-540-27326-4}, publisher={Springer Berlin Heidelberg}, address={Berlin, Heidelberg}, series={Lecture Notes in Computer Science}, booktitle={Symbolic and Quantitative Approaches to Reasoning with Uncertainty}, pages={1002--1013}, editor={Godo, Lluís}, author={Borgelt, Christian and Berthold, Michael R. and Patterson, David E.} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/24073"> <dc:creator>Borgelt, Christian</dc:creator> <dc:creator>Berthold, Michael R.</dc:creator> <dc:creator>Patterson, David E.</dc:creator> <dc:contributor>Borgelt, Christian</dc:contributor> <dcterms:abstract xml:lang="eng">The main task of drug discovery is to find novel bioactive molecules, i.e., chemical compounds that, for example, protect human cells against a virus. One way to support solving this task is to analyze a database of known and tested molecules in order to find structural properties of molecules that determine whether a molecule will be active or inactive, so that future chemical tests can be focused on the most promising candidates. A promising approach to this task was presented in [2]: an algorithm for finding molecular fragments that discriminate between active and inactive molecules. In this paper we review this approach as well as two extensions: a special treatment of rings and a method to find fragments with wildcards based on chemical expert knowledge.</dcterms:abstract> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dcterms:bibliographicCitation>Symbolic and quantitative approaches to reasoning with uncertainty : 8th European Conference, ECSQARU 2005, Barcelona, Spain, July 6 - 8, 2005; proceedings / Lluís Godo (ed.). - Berlin [u.a.] : Springer, 2005. - S. 1002-1013. - (Lecture notes in computer science ; 3571 : Lecture notes in artificial intelligence). - ISBN 978-3-540-27326-4</dcterms:bibliographicCitation> <dc:contributor>Patterson, David E.</dc:contributor> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/24073"/> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/24073/1/Borgelt_240736.pdf"/> <dc:language>eng</dc:language> <dcterms:issued>2005</dcterms:issued> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/24073/1/Borgelt_240736.pdf"/> <dc:rights>terms-of-use</dc:rights> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2013-07-26T07:23:49Z</dcterms:available> <dcterms:title>Molecular Fragment Mining for Drug Discovery</dcterms:title> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:contributor>Berthold, Michael R.</dc:contributor> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2013-07-26T07:23:49Z</dc:date> </rdf:Description> </rdf:RDF>