Publikation: Learning Attribute-to-Feature Mappings for Cold-Start Recommendations
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
Cold-start scenarios in recommender systems are situations in which no prior events, like ratings or clicks, are known for certain users or items. To compute predictions in such cases, additional information about users (user attributes, e.g. gender, age, geographical location, occupation) and items (item attributes, e.g. genres, product categories, keywords) must be used. We describe a method that maps such entity (e.g. user or item) attributes to the latent features of a matrix (or higher-dimensional) factorization model. With such mappings, the factors of a MF model trained by standard techniques can be applied to the new-user and the new-item problem, while retaining its advantages, in particular speed and predictive accuracy. We use the mapping concept to construct an attribute-aware matrix factorization model for item recommendation from implicit, positive-only feedback. Experiments on the new-item problem show that this approach provides good predictive accuracy, while the prediction time only grows by a constant factor.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
GANTNER, Zeno, Lucas DRUMOND, Christoph FREUDENTHALER, Steffen RENDLE, Lars SCHMIDT-THIEME, 2010. Learning Attribute-to-Feature Mappings for Cold-Start Recommendations. 2010 IEEE 10th International Conference on Data Mining (ICDM). Sydney, Australia, 13. Dez. 2010 - 17. Dez. 2010. In: 2010 IEEE International Conference on Data Mining. IEEE, 2010, pp. 176-185. ISBN 978-1-4244-9131-5. Available under: doi: 10.1109/ICDM.2010.129BibTex
@inproceedings{Gantner2010-12Learn-12687, year={2010}, doi={10.1109/ICDM.2010.129}, title={Learning Attribute-to-Feature Mappings for Cold-Start Recommendations}, isbn={978-1-4244-9131-5}, publisher={IEEE}, booktitle={2010 IEEE International Conference on Data Mining}, pages={176--185}, author={Gantner, Zeno and Drumond, Lucas and Freudenthaler, Christoph and Rendle, Steffen and Schmidt-Thieme, Lars} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/12687"> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-09-08T06:24:31Z</dc:date> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/12687"/> <dc:rights>terms-of-use</dc:rights> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dcterms:issued>2010-12</dcterms:issued> <dcterms:bibliographicCitation>First publ. in: 2010 IEEE 10th International Conference on Data Mining (ICDM 2010) : Sydney, Australia, 13 - 17 December 2010 ; [proceedings] / [IEEE Computer Society]. Ed.: Geoffrey I. Webb ... . Piscataway, NJ : IEEE, 2010, pp. 176-185</dcterms:bibliographicCitation> <dc:creator>Drumond, Lucas</dc:creator> <dcterms:abstract xml:lang="eng">Cold-start scenarios in recommender systems are situations in which no prior events, like ratings or clicks, are known for certain users or items. To compute predictions in such cases, additional information about users (user attributes, e.g. gender, age, geographical location, occupation) and items (item attributes, e.g. genres, product categories, keywords) must be used. We describe a method that maps such entity (e.g. user or item) attributes to the latent features of a matrix (or higher-dimensional) factorization model. With such mappings, the factors of a MF model trained by standard techniques can be applied to the new-user and the new-item problem, while retaining its advantages, in particular speed and predictive accuracy. We use the mapping concept to construct an attribute-aware matrix factorization model for item recommendation from implicit, positive-only feedback. Experiments on the new-item problem show that this approach provides good predictive accuracy, while the prediction time only grows by a constant factor.</dcterms:abstract> <dc:language>eng</dc:language> <dc:contributor>Drumond, Lucas</dc:contributor> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-09-08T06:24:31Z</dcterms:available> <dc:creator>Gantner, Zeno</dc:creator> <dcterms:title>Learning Attribute-to-Feature Mappings for Cold-Start Recommendations</dcterms:title> <dc:contributor>Freudenthaler, Christoph</dc:contributor> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:contributor>Rendle, Steffen</dc:contributor> <dc:contributor>Schmidt-Thieme, Lars</dc:contributor> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dc:creator>Rendle, Steffen</dc:creator> <dc:creator>Freudenthaler, Christoph</dc:creator> <dc:creator>Schmidt-Thieme, Lars</dc:creator> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:contributor>Gantner, Zeno</dc:contributor> </rdf:Description> </rdf:RDF>