Publikation:

Learning Attribute-to-Feature Mappings for Cold-Start Recommendations

Lade...
Vorschaubild

Dateien

Zu diesem Dokument gibt es keine Dateien.

Datum

2010

Autor:innen

Gantner, Zeno
Drumond, Lucas
Schmidt-Thieme, Lars

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Beitrag zu einem Konferenzband
Publikationsstatus
Published

Erschienen in

2010 IEEE International Conference on Data Mining. IEEE, 2010, pp. 176-185. ISBN 978-1-4244-9131-5. Available under: doi: 10.1109/ICDM.2010.129

Zusammenfassung

Cold-start scenarios in recommender systems are situations in which no prior events, like ratings or clicks, are known for certain users or items. To compute predictions in such cases, additional information about users (user attributes, e.g. gender, age, geographical location, occupation) and items (item attributes, e.g. genres, product categories, keywords) must be used. We describe a method that maps such entity (e.g. user or item) attributes to the latent features of a matrix (or higher-dimensional) factorization model. With such mappings, the factors of a MF model trained by standard techniques can be applied to the new-user and the new-item problem, while retaining its advantages, in particular speed and predictive accuracy. We use the mapping concept to construct an attribute-aware matrix factorization model for item recommendation from implicit, positive-only feedback. Experiments on the new-item problem show that this approach provides good predictive accuracy, while the prediction time only grows by a constant factor.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
004 Informatik

Schlagwörter

collaborative filtering, cold-start, matrix factorization, factorization models, long tail, recommender systems

Konferenz

2010 IEEE 10th International Conference on Data Mining (ICDM), 13. Dez. 2010 - 17. Dez. 2010, Sydney, Australia
Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690GANTNER, Zeno, Lucas DRUMOND, Christoph FREUDENTHALER, Steffen RENDLE, Lars SCHMIDT-THIEME, 2010. Learning Attribute-to-Feature Mappings for Cold-Start Recommendations. 2010 IEEE 10th International Conference on Data Mining (ICDM). Sydney, Australia, 13. Dez. 2010 - 17. Dez. 2010. In: 2010 IEEE International Conference on Data Mining. IEEE, 2010, pp. 176-185. ISBN 978-1-4244-9131-5. Available under: doi: 10.1109/ICDM.2010.129
BibTex
@inproceedings{Gantner2010-12Learn-12687,
  year={2010},
  doi={10.1109/ICDM.2010.129},
  title={Learning Attribute-to-Feature Mappings for Cold-Start Recommendations},
  isbn={978-1-4244-9131-5},
  publisher={IEEE},
  booktitle={2010 IEEE International Conference on Data Mining},
  pages={176--185},
  author={Gantner, Zeno and Drumond, Lucas and Freudenthaler, Christoph and Rendle, Steffen and Schmidt-Thieme, Lars}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/12687">
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-09-08T06:24:31Z</dc:date>
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/12687"/>
    <dc:rights>terms-of-use</dc:rights>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dcterms:issued>2010-12</dcterms:issued>
    <dcterms:bibliographicCitation>First publ. in: 2010 IEEE 10th International Conference on Data Mining (ICDM 2010) : Sydney, Australia, 13 - 17 December 2010 ; [proceedings] / [IEEE Computer Society]. Ed.: Geoffrey I. Webb ... . Piscataway, NJ : IEEE, 2010, pp. 176-185</dcterms:bibliographicCitation>
    <dc:creator>Drumond, Lucas</dc:creator>
    <dcterms:abstract xml:lang="eng">Cold-start scenarios in recommender systems are situations in which no prior events, like ratings or clicks, are known for certain users or items. To compute predictions in such cases, additional information about users (user attributes, e.g. gender, age, geographical location, occupation) and items (item attributes, e.g. genres, product categories, keywords) must be used. We describe a method that maps such entity (e.g. user or item) attributes to the latent features of a matrix (or higher-dimensional) factorization model. With such mappings, the factors of a MF model trained by standard techniques can be applied to the new-user and the new-item problem, while retaining its advantages, in particular speed and predictive accuracy. We use the mapping concept to construct an attribute-aware matrix factorization model for item recommendation from implicit, positive-only feedback. Experiments on the new-item problem show that this approach provides good predictive accuracy, while the prediction time only grows by a constant factor.</dcterms:abstract>
    <dc:language>eng</dc:language>
    <dc:contributor>Drumond, Lucas</dc:contributor>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-09-08T06:24:31Z</dcterms:available>
    <dc:creator>Gantner, Zeno</dc:creator>
    <dcterms:title>Learning Attribute-to-Feature Mappings for Cold-Start Recommendations</dcterms:title>
    <dc:contributor>Freudenthaler, Christoph</dc:contributor>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:contributor>Rendle, Steffen</dc:contributor>
    <dc:contributor>Schmidt-Thieme, Lars</dc:contributor>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dc:creator>Rendle, Steffen</dc:creator>
    <dc:creator>Freudenthaler, Christoph</dc:creator>
    <dc:creator>Schmidt-Thieme, Lars</dc:creator>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:contributor>Gantner, Zeno</dc:contributor>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Nein
Begutachtet
Diese Publikation teilen