Publikation:

Knowledge Generation in Visual Analytics : Integrating Human and Machine Intelligence for Exploration of Big Data

Lade...
Vorschaubild

Dateien

Sacha_2-163cdymlht22d9.pdf
Sacha_2-163cdymlht22d9.pdfGröße: 30.98 MBDownloads: 1399

Datum

2018

Autor:innen

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

DOI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Green
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Dissertation
Publikationsstatus
Published

Erschienen in

Zusammenfassung

Big data poses many facets and challenges when analyzing data, often described with the five big V’s of Volume, Variety, Velocity, Veracity, and Value. However, the most important V – Value can only be achieved when knowledge can be derived from the data. The volume of nowadays datasets make a manual investigation of all data records impossible and automated analysis techniques from data mining or machine learning often cannot be applied in a fully automated fashion to solve many real world analysis problems, and hence, need to be manually trained or adapted. Visual analytics aims to solve this problem with a “human-in-the-loop” approach that provides the analyst with a visual interface that tightly integrates automated analysis techniques with human interaction. However, a holistic understanding of these analytic processes is currently an under-explored research area. A major contribution of this dissertation is a conceptual model-driven approach to visual analytics that focuses on the human-machine interplay during knowledge generation. At its core, it presents the knowledge generation model which is subsequently specialized for human analytic behavior, visual interactive machine learning, and dimensionality reduction. These conceptual processes extend and combine existing conceptual works that aim to establish a theoretical foundation for visual analytics. In addition, this dissertation contributes novel methods to investigate and support human knowledge generation processes, such as semi-automation and recommendation, analytic behavior and trust building, or visual interaction with machine learning. These methods are investigated in close collaboration with real experts from different application domains (such as soccer analysis, linguistic intonation research, and criminal intelligence analysis) and hence, different data characteristics (geospatial movement, time series, and high-dimensional). The results demonstrate that this conceptual approach leads to novel, more tightly integrated, methods that support the analyst in knowledge generation. In a final broader discussion, this dissertation reflects the conceptual and methodological contributions and enumerates research areas at the intersection of data mining, machine learning, visualization, and human-computer interaction research, with the ultimate goal to make big data exploration more effective, efficient, and transparent.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
004 Informatik

Schlagwörter

Visual Analytics, Machine Learning, Data Mining, Information Visualization, Human-Computer-Interaction

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690SACHA, Dominik, 2018. Knowledge Generation in Visual Analytics : Integrating Human and Machine Intelligence for Exploration of Big Data [Dissertation]. Konstanz: University of Konstanz
BibTex
@phdthesis{Sacha2018Knowl-42243,
  year={2018},
  title={Knowledge Generation in Visual Analytics : Integrating Human and Machine Intelligence for Exploration of Big Data},
  author={Sacha, Dominik},
  address={Konstanz},
  school={Universität Konstanz}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/42243">
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/42243"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:contributor>Sacha, Dominik</dc:contributor>
    <dc:rights>terms-of-use</dc:rights>
    <dcterms:abstract xml:lang="eng">Big data poses many facets and challenges when analyzing data, often described with the five big V’s of Volume, Variety, Velocity, Veracity, and Value. However, the most important V – Value can only be achieved when knowledge can be derived from the data. The volume of nowadays datasets make a manual investigation of all data records impossible and automated analysis techniques from data mining or machine learning often cannot be applied in a fully automated fashion to solve many real world analysis problems, and hence, need to be manually trained or adapted. Visual analytics aims to solve this problem with a “human-in-the-loop” approach that provides the analyst with a visual interface that tightly integrates automated analysis techniques with human interaction. However, a holistic understanding of these analytic processes is currently an under-explored research area. A major contribution of this dissertation is a conceptual model-driven approach to visual analytics that focuses on the human-machine interplay during knowledge generation. At its core, it presents the knowledge generation model which is subsequently specialized for human analytic behavior, visual interactive machine learning, and dimensionality reduction. These conceptual processes extend and combine existing conceptual works that aim to establish a theoretical foundation for visual analytics. In addition, this dissertation contributes novel methods to investigate and support human knowledge generation processes, such as semi-automation and recommendation, analytic behavior and trust building, or visual interaction with machine learning. These methods are investigated in close collaboration with real experts from different application domains (such as soccer analysis, linguistic intonation research, and criminal intelligence analysis) and hence, different data characteristics (geospatial movement, time series, and high-dimensional). The results demonstrate that this conceptual approach leads to novel, more tightly integrated, methods that support the analyst in knowledge generation. In a final broader discussion, this dissertation reflects the conceptual and methodological contributions and enumerates research areas at the intersection of data mining, machine learning, visualization, and human-computer interaction research, with the ultimate goal to make big data exploration more effective, efficient, and transparent.</dcterms:abstract>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/42243/3/Sacha_2-163cdymlht22d9.pdf"/>
    <dcterms:title>Knowledge Generation in Visual Analytics : Integrating Human and Machine Intelligence for Exploration of Big Data</dcterms:title>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/42243/3/Sacha_2-163cdymlht22d9.pdf"/>
    <dc:language>eng</dc:language>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2018-05-03T09:51:34Z</dc:date>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2018-05-03T09:51:34Z</dcterms:available>
    <dcterms:issued>2018</dcterms:issued>
    <dc:creator>Sacha, Dominik</dc:creator>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

April 6, 2018
Hochschulschriftenvermerk
Konstanz, Univ., Diss., 2018
Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Nein
Begutachtet
Diese Publikation teilen