Publikation: Analyzing High-Dimensional Data by Subspace Validity
Lade...
Dateien
Datum
2003
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Open Access Green
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Beitrag zu einem Konferenzband
Publikationsstatus
Published
Erschienen in
Third IEEE International Conference on Data Mining. IEEE Comput. Soc, 2003, pp. 473-476. ISBN 0-7695-1978-4. Available under: doi: 10.1109/ICDM.2003.1250955
Zusammenfassung
We are proposing a novel method that makes it possible to analyze high dimensional data with arbitrary shaped projected clusters and high noise levels. At the core of our method lies the idea of subspace validity. We map the data in a way that allows us to test the quality of subspaces using statistical tests. Experimental results, both on synthetic and real data sets, demonstrate the potential of our method.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
004 Informatik
Schlagwörter
Konferenz
Third IEEE International Conference on Data Mining, Melbourne, FL, USA
Rezension
undefined / . - undefined, undefined
Zitieren
ISO 690
AMIR, Amihood, Reuven KASHI, Nathan S. NETANYAHU, Daniel A. KEIM, Markus WAWRYNIUK, 2003. Analyzing High-Dimensional Data by Subspace Validity. Third IEEE International Conference on Data Mining. Melbourne, FL, USA. In: Third IEEE International Conference on Data Mining. IEEE Comput. Soc, 2003, pp. 473-476. ISBN 0-7695-1978-4. Available under: doi: 10.1109/ICDM.2003.1250955BibTex
@inproceedings{Amir2003Analy-5491, year={2003}, doi={10.1109/ICDM.2003.1250955}, title={Analyzing High-Dimensional Data by Subspace Validity}, isbn={0-7695-1978-4}, publisher={IEEE Comput. Soc}, booktitle={Third IEEE International Conference on Data Mining}, pages={473--476}, author={Amir, Amihood and Kashi, Reuven and Netanyahu, Nathan S. and Keim, Daniel A. and Wawryniuk, Markus} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/5491"> <dc:contributor>Wawryniuk, Markus</dc:contributor> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-24T15:55:49Z</dcterms:available> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:creator>Kashi, Reuven</dc:creator> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/5491/1/Analyzing_High_Dimensional_Data_by_Subspace_Validity.pdf"/> <dcterms:abstract xml:lang="eng">We are proposing a novel method that makes it possible to analyze high dimensional data with arbitrary shaped projected clusters and high noise levels. At the core of our method lies the idea of subspace validity. We map the data in a way that allows us to test the quality of subspaces using statistical tests. Experimental results, both on synthetic and real data sets, demonstrate the potential of our method.</dcterms:abstract> <dcterms:issued>2003</dcterms:issued> <dc:creator>Netanyahu, Nathan S.</dc:creator> <dc:rights>Attribution-NonCommercial-NoDerivs 2.0 Generic</dc:rights> <dc:creator>Keim, Daniel A.</dc:creator> <dc:contributor>Keim, Daniel A.</dc:contributor> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-24T15:55:49Z</dc:date> <dc:creator>Wawryniuk, Markus</dc:creator> <dcterms:bibliographicCitation>First publ. in: Proceedings / Third IEEE International Conference on Data Mining, ICDM 2003 : 19 - 22 November 2003, Melbourne, Florida, pp. 473-476</dcterms:bibliographicCitation> <dc:language>eng</dc:language> <dcterms:title>Analyzing High-Dimensional Data by Subspace Validity</dcterms:title> <dc:contributor>Amir, Amihood</dc:contributor> <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by-nc-nd/2.0/"/> <dc:format>application/pdf</dc:format> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/5491"/> <dc:contributor>Kashi, Reuven</dc:contributor> <dc:contributor>Netanyahu, Nathan S.</dc:contributor> <dc:creator>Amir, Amihood</dc:creator> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/5491/1/Analyzing_High_Dimensional_Data_by_Subspace_Validity.pdf"/> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> </rdf:Description> </rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja