Publikation:

Analyzing High-Dimensional Data by Subspace Validity

Lade...
Vorschaubild

Dateien

Datum

2003

Autor:innen

Amir, Amihood
Kashi, Reuven
Netanyahu, Nathan S.
Wawryniuk, Markus

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Green
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Beitrag zu einem Konferenzband
Publikationsstatus
Published

Erschienen in

Third IEEE International Conference on Data Mining. IEEE Comput. Soc, 2003, pp. 473-476. ISBN 0-7695-1978-4. Available under: doi: 10.1109/ICDM.2003.1250955

Zusammenfassung

We are proposing a novel method that makes it possible to analyze high dimensional data with arbitrary shaped projected clusters and high noise levels. At the core of our method lies the idea of subspace validity. We map the data in a way that allows us to test the quality of subspaces using statistical tests. Experimental results, both on synthetic and real data sets, demonstrate the potential of our method.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
004 Informatik

Schlagwörter

Konferenz

Third IEEE International Conference on Data Mining, Melbourne, FL, USA
Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690AMIR, Amihood, Reuven KASHI, Nathan S. NETANYAHU, Daniel A. KEIM, Markus WAWRYNIUK, 2003. Analyzing High-Dimensional Data by Subspace Validity. Third IEEE International Conference on Data Mining. Melbourne, FL, USA. In: Third IEEE International Conference on Data Mining. IEEE Comput. Soc, 2003, pp. 473-476. ISBN 0-7695-1978-4. Available under: doi: 10.1109/ICDM.2003.1250955
BibTex
@inproceedings{Amir2003Analy-5491,
  year={2003},
  doi={10.1109/ICDM.2003.1250955},
  title={Analyzing High-Dimensional Data by Subspace Validity},
  isbn={0-7695-1978-4},
  publisher={IEEE Comput. Soc},
  booktitle={Third IEEE International Conference on Data Mining},
  pages={473--476},
  author={Amir, Amihood and Kashi, Reuven and Netanyahu, Nathan S. and Keim, Daniel A. and Wawryniuk, Markus}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/5491">
    <dc:contributor>Wawryniuk, Markus</dc:contributor>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-24T15:55:49Z</dcterms:available>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:creator>Kashi, Reuven</dc:creator>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/5491/1/Analyzing_High_Dimensional_Data_by_Subspace_Validity.pdf"/>
    <dcterms:abstract xml:lang="eng">We are proposing a novel method that makes it possible to analyze high dimensional data with arbitrary shaped projected clusters and high noise levels. At the core of our method lies the idea of subspace validity. We map the data in a way that allows us to test the quality of subspaces using statistical tests. Experimental results, both on synthetic and real data sets, demonstrate the potential of our method.</dcterms:abstract>
    <dcterms:issued>2003</dcterms:issued>
    <dc:creator>Netanyahu, Nathan S.</dc:creator>
    <dc:rights>Attribution-NonCommercial-NoDerivs 2.0 Generic</dc:rights>
    <dc:creator>Keim, Daniel A.</dc:creator>
    <dc:contributor>Keim, Daniel A.</dc:contributor>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-24T15:55:49Z</dc:date>
    <dc:creator>Wawryniuk, Markus</dc:creator>
    <dcterms:bibliographicCitation>First publ. in: Proceedings / Third IEEE International Conference on Data Mining, ICDM 2003 : 19 - 22 November 2003, Melbourne, Florida, pp. 473-476</dcterms:bibliographicCitation>
    <dc:language>eng</dc:language>
    <dcterms:title>Analyzing High-Dimensional Data by Subspace Validity</dcterms:title>
    <dc:contributor>Amir, Amihood</dc:contributor>
    <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by-nc-nd/2.0/"/>
    <dc:format>application/pdf</dc:format>
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/5491"/>
    <dc:contributor>Kashi, Reuven</dc:contributor>
    <dc:contributor>Netanyahu, Nathan S.</dc:contributor>
    <dc:creator>Amir, Amihood</dc:creator>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/5491/1/Analyzing_High_Dimensional_Data_by_Subspace_Validity.pdf"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen