Publikation: An interpretable approach to estimate the self-motion in fish-like robots using mode decomposition analysis
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
National Natural Science Foundation of China: U22A2062
National Natural Science Foundation of China: 12272008
National Natural Science Foundation of China: 12388101
Deutsche Forschungsgemeinschaft (DFG): EXC 2117-422037984
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
The artificial lateral line system, composed of velocity and pressure sensors, is the sensing system for fish-like robots by mimicking the lateral line system of aquatic organisms. However, accurately estimating the self-motion of the fish-like robot remains challenging due to the complex flow field generated by its movement. In this study, we employ the mode decomposition method to estimate the motion states based on artificial lateral lines for the fish-like robot. We find that primary decomposed modes are strongly correlated with the velocity components and can be interpreted through Lighthill’s theoretical pressure model. Moreover, our decomposition analysis indicates the redundancy of the sensor array design, which is verified by further synthetic analysis and explained by flow visualization. Finally, we demonstrate the generalizability of our method by accurately estimating the self-states of the fish-like robot under varying oscillation parameters, analyzing three-dimensional pressure data from the computational fluid dynamics simulations of boxfish (Ostracion cubicus) and eel-like (Anguilla anguilla) models, and robustly estimating the self-velocity in complex flows with vortices caused by a neighboring robot. Our interpretable and generalizable data-driven pipeline could be beneficial in generating hydrodynamic sensing hypotheses in biofluids and enhancing artificial-lateral-line-based perception in autonomous underwater robotics.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
ZHAI, Yufan, Xingwen ZHENG, Li-Ming CHAO, Shikun LI, Minglei XIONG, Yongxia JIA, Liang LI, Guangming XIE, 2025. An interpretable approach to estimate the self-motion in fish-like robots using mode decomposition analysis. In: Nature Communications. Springer. 2025, 16(1), 3887. eISSN 2041-1723. Verfügbar unter: doi: 10.1038/s41467-025-58880-6BibTex
@article{Zhai2025-04-24inter-73216, title={An interpretable approach to estimate the self-motion in fish-like robots using mode decomposition analysis}, year={2025}, doi={10.1038/s41467-025-58880-6}, number={1}, volume={16}, journal={Nature Communications}, author={Zhai, Yufan and Zheng, Xingwen and Chao, Li-Ming and Li, Shikun and Xiong, Minglei and Jia, Yongxia and Li, Liang and Xie, Guangming}, note={Article Number: 3887} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/73216"> <dc:rights>Attribution 4.0 International</dc:rights> <dc:contributor>Jia, Yongxia</dc:contributor> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/> <dc:language>eng</dc:language> <dc:creator>Zhai, Yufan</dc:creator> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/73216"/> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/> <dcterms:title>An interpretable approach to estimate the self-motion in fish-like robots using mode decomposition analysis</dcterms:title> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:contributor>Zhai, Yufan</dc:contributor> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:creator>Li, Liang</dc:creator> <dcterms:issued>2025-04-24</dcterms:issued> <dc:creator>Jia, Yongxia</dc:creator> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2025-05-07T06:54:43Z</dc:date> <dc:creator>Chao, Li-Ming</dc:creator> <dc:creator>Li, Shikun</dc:creator> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:contributor>Chao, Li-Ming</dc:contributor> <dc:contributor>Li, Shikun</dc:contributor> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/43615"/> <dc:contributor>Xie, Guangming</dc:contributor> <dcterms:abstract>The artificial lateral line system, composed of velocity and pressure sensors, is the sensing system for fish-like robots by mimicking the lateral line system of aquatic organisms. However, accurately estimating the self-motion of the fish-like robot remains challenging due to the complex flow field generated by its movement. In this study, we employ the mode decomposition method to estimate the motion states based on artificial lateral lines for the fish-like robot. We find that primary decomposed modes are strongly correlated with the velocity components and can be interpreted through Lighthill’s theoretical pressure model. Moreover, our decomposition analysis indicates the redundancy of the sensor array design, which is verified by further synthetic analysis and explained by flow visualization. Finally, we demonstrate the generalizability of our method by accurately estimating the self-states of the fish-like robot under varying oscillation parameters, analyzing three-dimensional pressure data from the computational fluid dynamics simulations of boxfish (Ostracion cubicus) and eel-like (Anguilla anguilla) models, and robustly estimating the self-velocity in complex flows with vortices caused by a neighboring robot. Our interpretable and generalizable data-driven pipeline could be beneficial in generating hydrodynamic sensing hypotheses in biofluids and enhancing artificial-lateral-line-based perception in autonomous underwater robotics.</dcterms:abstract> <dc:creator>Xiong, Minglei</dc:creator> <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by/4.0/"/> <dc:creator>Xie, Guangming</dc:creator> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:contributor>Xiong, Minglei</dc:contributor> <dc:contributor>Li, Liang</dc:contributor> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/43615"/> <dc:creator>Zheng, Xingwen</dc:creator> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/73216/1/Zhai_2-1776oau23311z9.pdf"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2025-05-07T06:54:43Z</dcterms:available> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/73216/1/Zhai_2-1776oau23311z9.pdf"/> <dc:contributor>Zheng, Xingwen</dc:contributor> </rdf:Description> </rdf:RDF>