Publikation: Estimation quality and required sample sizes in three-level contextual analysis models
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
In multilevel analysis, Level-1 predictors that also explain variance at a higher level are called contextual predictors. In the multilevel manifest covariate model, the Level-2 component is modeled as the average of the Level-1 predictor scores within a cluster. In the multilevel latent covariate model, the predictor is decomposed into two latent variables at Level-1 and Level-2. Performance conditions of these modeling approaches for three-level models are largely unexplored. We investigate the two approaches’ performance with respect to bias, coverage, and power in a three-level random intercept model. Results reveal differences in estimation quality and required sample sizes. We provide sampling recommendations for both approaches.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
KERKHOFF, Denny, Fridtjof W. NUSSBECK, 2023. Estimation quality and required sample sizes in three-level contextual analysis models. In: Methodology. Leibniz Institute for Psychology Information (ZPID). 2023, 19(2), pp. 133-151. ISSN 1614-1881. eISSN 1614-2241. Available under: doi: 10.5964/meth.9775BibTex
@article{Kerkhoff2023-06-30Estim-67529, year={2023}, doi={10.5964/meth.9775}, title={Estimation quality and required sample sizes in three-level contextual analysis models}, number={2}, volume={19}, issn={1614-1881}, journal={Methodology}, pages={133--151}, author={Kerkhoff, Denny and Nussbeck, Fridtjof W.} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/67529"> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by/4.0/"/> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/43"/> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/67529"/> <dcterms:issued>2023-06-30</dcterms:issued> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/43"/> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/67529/1/Kerkhoff_2-18l0zuxsszyf75.pdf"/> <dc:language>eng</dc:language> <dcterms:title>Estimation quality and required sample sizes in three-level contextual analysis models</dcterms:title> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2023-08-08T09:14:31Z</dcterms:available> <dc:contributor>Kerkhoff, Denny</dc:contributor> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/67529/1/Kerkhoff_2-18l0zuxsszyf75.pdf"/> <dc:rights>Attribution 4.0 International</dc:rights> <dc:creator>Kerkhoff, Denny</dc:creator> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2023-08-08T09:14:31Z</dc:date> <dc:contributor>Nussbeck, Fridtjof W.</dc:contributor> <dcterms:abstract>In multilevel analysis, Level-1 predictors that also explain variance at a higher level are called contextual predictors. In the multilevel manifest covariate model, the Level-2 component is modeled as the average of the Level-1 predictor scores within a cluster. In the multilevel latent covariate model, the predictor is decomposed into two latent variables at Level-1 and Level-2. Performance conditions of these modeling approaches for three-level models are largely unexplored. We investigate the two approaches’ performance with respect to bias, coverage, and power in a three-level random intercept model. Results reveal differences in estimation quality and required sample sizes. We provide sampling recommendations for both approaches.</dcterms:abstract> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:creator>Nussbeck, Fridtjof W.</dc:creator> </rdf:Description> </rdf:RDF>