Publikation:

Analysis of the Parallel Schwarz Method for Growing Chains of Fixed-Sized Subdomains : Part I

Lade...
Vorschaubild

Dateien

Zu diesem Dokument gibt es keine Dateien.

Datum

2017

Autor:innen

Gander, Martin J.

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

URI (zitierfähiger Link)
DOI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

SIAM Journal on Numerical Analysis. 2017, 55(3), pp. 1330-1356. ISSN 0036-1429. eISSN 1095-7170. Available under: doi: 10.1137/16M1065215

Zusammenfassung

In implicit solvation models, the electrostatic contribution to the solvation energy can be estimated by solving a system of elliptic partial differential equations modeling the reaction potential. The domain of definition of such elliptic equations is the union of the van der Waals cavities corresponding to the atoms of the solute molecule. Therefore, the computations can naturally be performed using Schwarz methods, where each atom of the molecule corresponds to a subdomain. In contrast to classical Schwarz theory, it was observed numerically that the convergence of the Schwarz method in this case does not depend on the number of subdomains, even without coarse correction. We prove this observation by analyzing the Schwarz iteration matrices in Fourier space and evaluating corresponding norms in a simplified setting. In order to obtain our contraction results, we had to choose a specific iteration formulation, and we show that other formulations of the same algorithm can generate Schwarz iteration matrices with much larger norms leading to the failure of norm arguments, even though the spectral radii are identical. By introducing a new optimality concept for Schwarz iteration operators with respect to error estimation, we finally show how to find Schwarz iteration matrix formulations which permit such small norm estimates.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
510 Mathematik

Schlagwörter

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690CIARAMELLA, Gabriele, Martin J. GANDER, 2017. Analysis of the Parallel Schwarz Method for Growing Chains of Fixed-Sized Subdomains : Part I. In: SIAM Journal on Numerical Analysis. 2017, 55(3), pp. 1330-1356. ISSN 0036-1429. eISSN 1095-7170. Available under: doi: 10.1137/16M1065215
BibTex
@article{Ciaramella2017-01Analy-41227,
  year={2017},
  doi={10.1137/16M1065215},
  title={Analysis of the Parallel Schwarz Method for Growing Chains of Fixed-Sized Subdomains : Part I},
  number={3},
  volume={55},
  issn={0036-1429},
  journal={SIAM Journal on Numerical Analysis},
  pages={1330--1356},
  author={Ciaramella, Gabriele and Gander, Martin J.}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41227">
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:issued>2017-01</dcterms:issued>
    <dc:creator>Gander, Martin J.</dc:creator>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/41227"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2018-02-05T13:50:01Z</dcterms:available>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2018-02-05T13:50:01Z</dc:date>
    <dc:creator>Ciaramella, Gabriele</dc:creator>
    <dcterms:title>Analysis of the Parallel Schwarz Method for Growing Chains of Fixed-Sized Subdomains : Part I</dcterms:title>
    <dc:contributor>Gander, Martin J.</dc:contributor>
    <dcterms:abstract xml:lang="eng">In implicit solvation models, the electrostatic contribution to the solvation energy can be estimated by solving a system of elliptic partial differential equations modeling the reaction potential. The domain of definition of such elliptic equations is the union of the van der Waals cavities corresponding to the atoms of the solute molecule. Therefore, the computations can naturally be performed using Schwarz methods, where each atom of the molecule corresponds to a subdomain. In contrast to classical Schwarz theory, it was observed numerically that the convergence of the Schwarz method in this case does not depend on the number of subdomains, even without coarse correction. We prove this observation by analyzing the Schwarz iteration matrices in Fourier space and evaluating corresponding norms in a simplified setting. In order to obtain our contraction results, we had to choose a specific iteration formulation, and we show that other formulations of the same algorithm can generate Schwarz iteration matrices with much larger norms leading to the failure of norm arguments, even though the spectral radii are identical. By introducing a new optimality concept for Schwarz iteration operators with respect to error estimation, we finally show how to find Schwarz iteration matrix formulations which permit such small norm estimates.</dcterms:abstract>
    <dc:language>eng</dc:language>
    <dc:contributor>Ciaramella, Gabriele</dc:contributor>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen