Publikation:

Reproducibility of graph metrics of human brain functional networks

Lade...
Vorschaubild

Dateien

deuker09rep.pdf
deuker09rep.pdfGröße: 717.09 KBDownloads: 954

Datum

2009

Autor:innen

Deuker, Lorena
Bullmore, Edward T.
Smith, Marie
Christensen, Søren
Nathan, Pradeep J.
Bassett, Danielle S.

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Green
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

NeuroImage. 2009, 47(4), pp. 1460-1468. ISSN 1053-8119. eISSN 1095-9572. Available under: doi: 10.1016/j.neuroimage.2009.05.035

Zusammenfassung

Graph theory provides many metrics of complex network organization that can be applied to analysis of brain networks derived from neuroimaging data. Here we investigated the test retest reliability of graph metrics of functional networks derived from magnetoencephalography (MEG) data recorded in two sessions from 16 healthy volunteers who were studied at rest and during performance of the n-back working memory task in each session. For each subject's data at each session, we used a wavelet filter to estimate the mutual information (MI) between each pair of MEG sensors in each of the classical frequency intervals from ã to low ä in the overall range 1 60 Hz. Undirected binary graphs were generated by thresholding the MI matrix and 8 global network metrics were estimated: the clustering coefficient, path length, small-worldness, efficiency, cost-efficiency, assortativity, hierarchy, and synchronizability. Reliability of each graph metric was assessed using the intraclass correlation (ICC). Good reliability was demonstrated for most metrics applied to the nback data (mean ICC=0.62). Reliability was greater for metrics in lower frequency networks. Higher frequency ã- and â-band networks were less reliable at a global level but demonstrated high reliability of nodal metrics in frontal and parietal regions. Performance of the n-back task was associated with greater reliability than measurements on resting state data. Task practice was also associated with greater reliability. Collectively these results suggest that graph metrics are sufficiently reliable to be considered for future longitudinal studies of functional brain network changes.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
150 Psychologie

Schlagwörter

brain network, MEG, brain metrics

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690DEUKER, Lorena, Edward T. BULLMORE, Marie SMITH, Søren CHRISTENSEN, Pradeep J. NATHAN, Brigitte ROCKSTROH, Danielle S. BASSETT, 2009. Reproducibility of graph metrics of human brain functional networks. In: NeuroImage. 2009, 47(4), pp. 1460-1468. ISSN 1053-8119. eISSN 1095-9572. Available under: doi: 10.1016/j.neuroimage.2009.05.035
BibTex
@article{Deuker2009Repro-10083,
  year={2009},
  doi={10.1016/j.neuroimage.2009.05.035},
  title={Reproducibility of graph metrics of human brain functional networks},
  number={4},
  volume={47},
  issn={1053-8119},
  journal={NeuroImage},
  pages={1460--1468},
  author={Deuker, Lorena and Bullmore, Edward T. and Smith, Marie and Christensen, Søren and Nathan, Pradeep J. and Rockstroh, Brigitte and Bassett, Danielle S.}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/10083">
    <dc:creator>Deuker, Lorena</dc:creator>
    <dc:contributor>Deuker, Lorena</dc:contributor>
    <dc:creator>Bassett, Danielle S.</dc:creator>
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/10083"/>
    <dc:contributor>Bullmore, Edward T.</dc:contributor>
    <dc:creator>Christensen, Søren</dc:creator>
    <dc:creator>Bullmore, Edward T.</dc:creator>
    <dcterms:bibliographicCitation>First publ. in: NeuroImage ; 47 (2009), 4. - S. 1460-1468</dcterms:bibliographicCitation>
    <dcterms:issued>2009</dcterms:issued>
    <dc:contributor>Christensen, Søren</dc:contributor>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dcterms:abstract xml:lang="eng">Graph theory provides many metrics of complex network organization that can be applied to analysis of brain networks derived from neuroimaging data. Here we investigated the test retest reliability of graph metrics of functional networks derived from magnetoencephalography (MEG) data recorded in two sessions from 16 healthy volunteers who were studied at rest and during performance of the n-back working memory task in each session. For each subject's data at each session, we used a wavelet filter to estimate the mutual information (MI) between each pair of MEG sensors in each of the classical frequency intervals from ã to low ä in the overall range 1 60 Hz. Undirected binary graphs were generated by thresholding the MI matrix and 8 global network metrics were estimated: the clustering coefficient, path length, small-worldness, efficiency, cost-efficiency, assortativity, hierarchy, and synchronizability. Reliability of each graph metric was assessed using the intraclass correlation (ICC). Good reliability was demonstrated for most metrics applied to the nback data (mean ICC=0.62). Reliability was greater for metrics in lower frequency networks. Higher frequency ã- and â-band networks were less reliable at a global level but demonstrated high reliability of nodal metrics in frontal and parietal regions. Performance of the n-back task was associated with greater reliability than measurements on resting state data. Task practice was also associated with greater reliability. Collectively these results suggest that graph metrics are sufficiently reliable to be considered for future longitudinal studies of functional brain network changes.</dcterms:abstract>
    <dc:contributor>Rockstroh, Brigitte</dc:contributor>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/43"/>
    <dc:creator>Rockstroh, Brigitte</dc:creator>
    <dc:contributor>Bassett, Danielle S.</dc:contributor>
    <dc:language>eng</dc:language>
    <dc:rights>terms-of-use</dc:rights>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/10083/1/deuker09rep.pdf"/>
    <dcterms:title>Reproducibility of graph metrics of human brain functional networks</dcterms:title>
    <dc:contributor>Nathan, Pradeep J.</dc:contributor>
    <dc:creator>Nathan, Pradeep J.</dc:creator>
    <dc:contributor>Smith, Marie</dc:contributor>
    <dc:format>application/pdf</dc:format>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/43"/>
    <dc:creator>Smith, Marie</dc:creator>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-25T09:14:00Z</dc:date>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/10083/1/deuker09rep.pdf"/>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen