Publikation:

Classification accuracy of multivariate analysis applied to 99mTc-ECD SPECT data in Alzheimer s disease patients and asymptomatic controls

Lade...
Vorschaubild

Dateien

merhof_classification_accuracy_2009.pdf
merhof_classification_accuracy_2009.pdfGröße: 630.57 KBDownloads: 253

Datum

2009

Autor:innen

Declerck, Jérôme
Platsch, Günther
Matthews, Julian C.
Herholz, Karl

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Green
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Beitrag zu einem Konferenzband
Publikationsstatus
Published

Erschienen in

2009 IEEE Nuclear Science Symposium Conference Record (NSS/MIC). IEEE, 2009, pp. 3721-3725. ISBN 978-1-4244-3961-4. Available under: doi: 10.1109/NSSMIC.2009.5401871

Zusammenfassung

With increasing life expectancy in developed countries, there is a corresponding increase in the frequency of diseases typically associated with old age, in particular dementia. In recent research, multivariate analysis of Positron Emission Tomography (PET) datasets has shown potential for classification between Alzheimer s disease (AD) patients and asymptomatic controls. In this work, the feasibility of multivariate analysis using Principal Component Analysis (PCA) and Fisher Discriminant Analysis (FDA) of Single Photon Emission Computed Tomography (SPECT) data is investigated. In order to obtain robust and reliable results, bootstrap resampling is applied and the robustness and classification accuracy of PCA/FDA are investigated. The robustness of the analysis is assessed by estimating the distribution of the angle between PCA/FDA discriminative vectors generated by bootstrap resampling, and the classification predictive accuracy is assessed using the .632 bootstrap estimator. The results indicate that PCA/FDA on SPECT data enables a robust differentiation between AD patients and asymptomatic controls based on three principal components, with a classification accuracy of 89%.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
004 Informatik

Schlagwörter

Single photon emission computed tomography (SPECT), Alzheimer s disease (AD), Multivariate Analysis, Principal Component Analysis (PCA)

Konferenz

2009 IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC 2009), 24. Okt. 2009 - 1. Nov. 2009, Orlando, FL
Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690MERHOF, Dorit, Pawel J. MARKIEWICZ, Jérôme DECLERCK, Günther PLATSCH, Julian C. MATTHEWS, Karl HERHOLZ, 2009. Classification accuracy of multivariate analysis applied to 99mTc-ECD SPECT data in Alzheimer s disease patients and asymptomatic controls. 2009 IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC 2009). Orlando, FL, 24. Okt. 2009 - 1. Nov. 2009. In: 2009 IEEE Nuclear Science Symposium Conference Record (NSS/MIC). IEEE, 2009, pp. 3721-3725. ISBN 978-1-4244-3961-4. Available under: doi: 10.1109/NSSMIC.2009.5401871
BibTex
@inproceedings{Merhof2009-10Class-5731,
  year={2009},
  doi={10.1109/NSSMIC.2009.5401871},
  title={Classification accuracy of multivariate analysis applied to 99mTc-ECD SPECT data in Alzheimer s disease patients and asymptomatic controls},
  isbn={978-1-4244-3961-4},
  publisher={IEEE},
  booktitle={2009 IEEE Nuclear Science Symposium Conference Record (NSS/MIC)},
  pages={3721--3725},
  author={Merhof, Dorit and Markiewicz, Pawel J. and Declerck, Jérôme and Platsch, Günther and Matthews, Julian C. and Herholz, Karl}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/5731">
    <dc:contributor>Merhof, Dorit</dc:contributor>
    <dc:contributor>Markiewicz, Pawel J.</dc:contributor>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:creator>Declerck, Jérôme</dc:creator>
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/5731"/>
    <dc:format>application/pdf</dc:format>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/5731/1/merhof_classification_accuracy_2009.pdf"/>
    <dcterms:bibliographicCitation>First publ. in: 2009 IEEE Nuclear Science Symposium Conference Record (NSS/MIC) / Ed. Bo Yu. IEEE, 2010, pp. 3721-3725</dcterms:bibliographicCitation>
    <dc:contributor>Matthews, Julian C.</dc:contributor>
    <dc:rights>terms-of-use</dc:rights>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/5731/1/merhof_classification_accuracy_2009.pdf"/>
    <dc:contributor>Platsch, Günther</dc:contributor>
    <dc:contributor>Declerck, Jérôme</dc:contributor>
    <dc:creator>Herholz, Karl</dc:creator>
    <dc:creator>Matthews, Julian C.</dc:creator>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-24T15:59:39Z</dc:date>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-24T15:59:39Z</dcterms:available>
    <dc:language>eng</dc:language>
    <dc:contributor>Herholz, Karl</dc:contributor>
    <dc:creator>Markiewicz, Pawel J.</dc:creator>
    <dc:creator>Merhof, Dorit</dc:creator>
    <dcterms:abstract xml:lang="eng">With increasing life expectancy in developed countries, there is a corresponding increase in the frequency of diseases typically associated with old age, in particular dementia. In recent research, multivariate analysis of Positron Emission Tomography (PET) datasets has shown potential for classification between Alzheimer s disease (AD) patients and asymptomatic controls. In this work, the feasibility of multivariate analysis using Principal Component Analysis (PCA) and Fisher Discriminant Analysis (FDA) of Single Photon Emission Computed Tomography (SPECT) data is investigated. In order to obtain robust and reliable results, bootstrap resampling is applied and the robustness and classification accuracy of PCA/FDA are investigated. The robustness of the analysis is assessed by estimating the distribution of the angle between PCA/FDA discriminative vectors generated by bootstrap resampling, and the classification predictive accuracy is assessed using the .632 bootstrap estimator. The results indicate that PCA/FDA on SPECT data enables a robust differentiation between AD patients and asymptomatic controls based on three principal components, with a classification accuracy of 89%.</dcterms:abstract>
    <dcterms:issued>2009-10</dcterms:issued>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:creator>Platsch, Günther</dc:creator>
    <dcterms:title>Classification accuracy of multivariate analysis applied to 99mTc-ECD SPECT data in Alzheimer s disease patients and asymptomatic controls</dcterms:title>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen