Publikation: Classification accuracy of multivariate analysis applied to 99mTc-ECD SPECT data in Alzheimer s disease patients and asymptomatic controls
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
With increasing life expectancy in developed countries, there is a corresponding increase in the frequency of diseases typically associated with old age, in particular dementia. In recent research, multivariate analysis of Positron Emission Tomography (PET) datasets has shown potential for classification between Alzheimer s disease (AD) patients and asymptomatic controls. In this work, the feasibility of multivariate analysis using Principal Component Analysis (PCA) and Fisher Discriminant Analysis (FDA) of Single Photon Emission Computed Tomography (SPECT) data is investigated. In order to obtain robust and reliable results, bootstrap resampling is applied and the robustness and classification accuracy of PCA/FDA are investigated. The robustness of the analysis is assessed by estimating the distribution of the angle between PCA/FDA discriminative vectors generated by bootstrap resampling, and the classification predictive accuracy is assessed using the .632 bootstrap estimator. The results indicate that PCA/FDA on SPECT data enables a robust differentiation between AD patients and asymptomatic controls based on three principal components, with a classification accuracy of 89%.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
MERHOF, Dorit, Pawel J. MARKIEWICZ, Jérôme DECLERCK, Günther PLATSCH, Julian C. MATTHEWS, Karl HERHOLZ, 2009. Classification accuracy of multivariate analysis applied to 99mTc-ECD SPECT data in Alzheimer s disease patients and asymptomatic controls. 2009 IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC 2009). Orlando, FL, 24. Okt. 2009 - 1. Nov. 2009. In: 2009 IEEE Nuclear Science Symposium Conference Record (NSS/MIC). IEEE, 2009, pp. 3721-3725. ISBN 978-1-4244-3961-4. Available under: doi: 10.1109/NSSMIC.2009.5401871BibTex
@inproceedings{Merhof2009-10Class-5731, year={2009}, doi={10.1109/NSSMIC.2009.5401871}, title={Classification accuracy of multivariate analysis applied to 99mTc-ECD SPECT data in Alzheimer s disease patients and asymptomatic controls}, isbn={978-1-4244-3961-4}, publisher={IEEE}, booktitle={2009 IEEE Nuclear Science Symposium Conference Record (NSS/MIC)}, pages={3721--3725}, author={Merhof, Dorit and Markiewicz, Pawel J. and Declerck, Jérôme and Platsch, Günther and Matthews, Julian C. and Herholz, Karl} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/5731"> <dc:contributor>Merhof, Dorit</dc:contributor> <dc:contributor>Markiewicz, Pawel J.</dc:contributor> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:creator>Declerck, Jérôme</dc:creator> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/5731"/> <dc:format>application/pdf</dc:format> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/5731/1/merhof_classification_accuracy_2009.pdf"/> <dcterms:bibliographicCitation>First publ. in: 2009 IEEE Nuclear Science Symposium Conference Record (NSS/MIC) / Ed. Bo Yu. IEEE, 2010, pp. 3721-3725</dcterms:bibliographicCitation> <dc:contributor>Matthews, Julian C.</dc:contributor> <dc:rights>terms-of-use</dc:rights> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/5731/1/merhof_classification_accuracy_2009.pdf"/> <dc:contributor>Platsch, Günther</dc:contributor> <dc:contributor>Declerck, Jérôme</dc:contributor> <dc:creator>Herholz, Karl</dc:creator> <dc:creator>Matthews, Julian C.</dc:creator> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-24T15:59:39Z</dc:date> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-24T15:59:39Z</dcterms:available> <dc:language>eng</dc:language> <dc:contributor>Herholz, Karl</dc:contributor> <dc:creator>Markiewicz, Pawel J.</dc:creator> <dc:creator>Merhof, Dorit</dc:creator> <dcterms:abstract xml:lang="eng">With increasing life expectancy in developed countries, there is a corresponding increase in the frequency of diseases typically associated with old age, in particular dementia. In recent research, multivariate analysis of Positron Emission Tomography (PET) datasets has shown potential for classification between Alzheimer s disease (AD) patients and asymptomatic controls. In this work, the feasibility of multivariate analysis using Principal Component Analysis (PCA) and Fisher Discriminant Analysis (FDA) of Single Photon Emission Computed Tomography (SPECT) data is investigated. In order to obtain robust and reliable results, bootstrap resampling is applied and the robustness and classification accuracy of PCA/FDA are investigated. The robustness of the analysis is assessed by estimating the distribution of the angle between PCA/FDA discriminative vectors generated by bootstrap resampling, and the classification predictive accuracy is assessed using the .632 bootstrap estimator. The results indicate that PCA/FDA on SPECT data enables a robust differentiation between AD patients and asymptomatic controls based on three principal components, with a classification accuracy of 89%.</dcterms:abstract> <dcterms:issued>2009-10</dcterms:issued> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:creator>Platsch, Günther</dc:creator> <dcterms:title>Classification accuracy of multivariate analysis applied to 99mTc-ECD SPECT data in Alzheimer s disease patients and asymptomatic controls</dcterms:title> </rdf:Description> </rdf:RDF>