Publikation: Constructive Training of Probabilistic Neural Network
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
This paper presents an easy to use, constructive training algorithm for Probabilistic Neural Networks a special type of Radial Basis Function Networks. In contrast to other algorithms, predefinition of the network topology is not required. The proposed algorithm introduces new hidden units whenever necessary and adjusts the shape of already existing units individually to minimize the risk of misclassification. This leads to smaller networks compared to classical PNNs and therefore enables the use of large datasets. Using eight classification benchmarks from the StatLog project, the new algorithm is compared to other state of the art classification methods. It is demonstrated that the proposed algorithm generates Probabilistic Neural Networks that achieve a comparable classification performance on these datasets. Only two rather uncritical parameters are required to be adjusted manually and there is no danger of overtraining - the algorithm clearly indicates the end of training. In addition, the networks generated are small due to the lack of redundant neurons in the hidden layer.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
BERTHOLD, Michael R., Jay DIAMOND, 1998. Constructive Training of Probabilistic Neural Network. In: Neurocomputing. 1998, 19, pp. 167-183. Available under: doi: 10.1016/S0925-2312(97)00063-5BibTex
@article{Berthold1998Const-5586, year={1998}, doi={10.1016/S0925-2312(97)00063-5}, title={Constructive Training of Probabilistic Neural Network}, volume={19}, journal={Neurocomputing}, pages={167--183}, author={Berthold, Michael R. and Diamond, Jay} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/5586"> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-24T15:56:36Z</dc:date> <dcterms:issued>1998</dcterms:issued> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/5586"/> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:language>eng</dc:language> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dcterms:bibliographicCitation>First publ. in: Neurocomputing 19 (1998), pp. 167-183</dcterms:bibliographicCitation> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/5586/1/BeDi98_dda_neurocomp.pdf"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-24T15:56:36Z</dcterms:available> <dc:rights>Attribution-NonCommercial-NoDerivs 2.0 Generic</dc:rights> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dcterms:abstract xml:lang="eng">This paper presents an easy to use, constructive training algorithm for Probabilistic Neural Networks a special type of Radial Basis Function Networks. In contrast to other algorithms, predefinition of the network topology is not required. The proposed algorithm introduces new hidden units whenever necessary and adjusts the shape of already existing units individually to minimize the risk of misclassification. This leads to smaller networks compared to classical PNNs and therefore enables the use of large datasets. Using eight classification benchmarks from the StatLog project, the new algorithm is compared to other state of the art classification methods. It is demonstrated that the proposed algorithm generates Probabilistic Neural Networks that achieve a comparable classification performance on these datasets. Only two rather uncritical parameters are required to be adjusted manually and there is no danger of overtraining - the algorithm clearly indicates the end of training. In addition, the networks generated are small due to the lack of redundant neurons in the hidden layer.</dcterms:abstract> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/5586/1/BeDi98_dda_neurocomp.pdf"/> <dcterms:title>Constructive Training of Probabilistic Neural Network</dcterms:title> <dc:format>application/pdf</dc:format> <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by-nc-nd/2.0/"/> <dc:contributor>Berthold, Michael R.</dc:contributor> <dc:creator>Diamond, Jay</dc:creator> <dc:contributor>Diamond, Jay</dc:contributor> <dc:creator>Berthold, Michael R.</dc:creator> </rdf:Description> </rdf:RDF>