Publikation:

Constructive Training of Probabilistic Neural Network

Lade...
Vorschaubild

Dateien

BeDi98_dda_neurocomp.pdf
BeDi98_dda_neurocomp.pdfGröße: 273.93 KBDownloads: 767

Datum

1998

Autor:innen

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Green
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

Neurocomputing. 1998, 19, pp. 167-183. Available under: doi: 10.1016/S0925-2312(97)00063-5

Zusammenfassung

This paper presents an easy to use, constructive training algorithm for Probabilistic Neural Networks a special type of Radial Basis Function Networks. In contrast to other algorithms, predefinition of the network topology is not required. The proposed algorithm introduces new hidden units whenever necessary and adjusts the shape of already existing units individually to minimize the risk of misclassification. This leads to smaller networks compared to classical PNNs and therefore enables the use of large datasets. Using eight classification benchmarks from the StatLog project, the new algorithm is compared to other state of the art classification methods. It is demonstrated that the proposed algorithm generates Probabilistic Neural Networks that achieve a comparable classification performance on these datasets. Only two rather uncritical parameters are required to be adjusted manually and there is no danger of overtraining - the algorithm clearly indicates the end of training. In addition, the networks generated are small due to the lack of redundant neurons in the hidden layer.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
004 Informatik

Schlagwörter

Probabilistic Neural Network, Pattern Recognition, Constructive Training, Dynamic Decay Adjustment

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690BERTHOLD, Michael R., Jay DIAMOND, 1998. Constructive Training of Probabilistic Neural Network. In: Neurocomputing. 1998, 19, pp. 167-183. Available under: doi: 10.1016/S0925-2312(97)00063-5
BibTex
@article{Berthold1998Const-5586,
  year={1998},
  doi={10.1016/S0925-2312(97)00063-5},
  title={Constructive Training of Probabilistic Neural Network},
  volume={19},
  journal={Neurocomputing},
  pages={167--183},
  author={Berthold, Michael R. and Diamond, Jay}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/5586">
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-24T15:56:36Z</dc:date>
    <dcterms:issued>1998</dcterms:issued>
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/5586"/>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:language>eng</dc:language>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dcterms:bibliographicCitation>First publ. in: Neurocomputing 19 (1998), pp. 167-183</dcterms:bibliographicCitation>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/5586/1/BeDi98_dda_neurocomp.pdf"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-24T15:56:36Z</dcterms:available>
    <dc:rights>Attribution-NonCommercial-NoDerivs 2.0 Generic</dc:rights>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:abstract xml:lang="eng">This paper presents an easy to use, constructive training algorithm for Probabilistic Neural Networks a special type of Radial Basis Function Networks.  In contrast to other algorithms, predefinition of the network topology is not required. The proposed algorithm introduces new hidden units whenever necessary and adjusts the shape of already existing units individually to minimize the risk of misclassification. This leads to smaller networks compared to classical PNNs and therefore enables the use of large datasets. Using eight classification benchmarks from the StatLog project, the new algorithm is compared to other state of the art classification methods. It is demonstrated that the proposed algorithm generates Probabilistic Neural Networks that achieve a comparable classification performance on these datasets. Only two rather uncritical parameters are required to be adjusted manually and there is no danger of overtraining - the algorithm clearly indicates the end of training. In addition, the networks generated are small due to the lack of redundant neurons in the hidden layer.</dcterms:abstract>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/5586/1/BeDi98_dda_neurocomp.pdf"/>
    <dcterms:title>Constructive Training of Probabilistic Neural Network</dcterms:title>
    <dc:format>application/pdf</dc:format>
    <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by-nc-nd/2.0/"/>
    <dc:contributor>Berthold, Michael R.</dc:contributor>
    <dc:creator>Diamond, Jay</dc:creator>
    <dc:contributor>Diamond, Jay</dc:contributor>
    <dc:creator>Berthold, Michael R.</dc:creator>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Nein
Begutachtet
Diese Publikation teilen