Publikation: Style Agnostic 3D Reconstruction via Adversarial Style Transfer
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
Reconstructing the 3D geometry of an object from an image is a major challenge in computer vision. Recently introduced differentiable renderers can be leveraged to learn the 3D geometry of objects from 2D images, but those approaches require additional supervision to enable the renderer to produce an output that can be compared to the input image. This can be scene information or constraints such as object silhouettes, uniform backgrounds, material, texture, and lighting. In this paper, we propose an approach that enables a differentiable rendering-based learning of 3D objects from images with backgrounds without the need for silhouette supervision. Instead of trying to render an image close to the input, we propose an adversarial style-transfer and domain adaptation pipeline that allows to translate the input image domain to the rendered image domain. This allows us to directly compare between a translated image and the differentiable rendering of a 3D object reconstruction in order to train the 3D object reconstruction network. We show that the approach learns 3D geometry from images with backgrounds and provides a better performance than constrained methods for single-view 3D object reconstruction on this task.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
PETERSEN, Felix, Bastian GOLDLÜCKE, Oliver DEUSSEN, Hilde KUEHNE, 2022. Style Agnostic 3D Reconstruction via Adversarial Style Transfer. 2022 IEEE Winter Conference on Applications of Computer Vision. Waikoloa, Hawaii, 4. Jan. 2022 - 8. Jan. 2022. In: 2022 IEEE Winter Conference on Applications of Computer Vision : WACW 2022 : proceedings : 4 - 8 January 2022, Waikoloa, Hawaii. Piscataway: IEEE, 2022, pp. 2273-2282. ISBN 978-1-66540-915-5. Available under: doi: 10.1109/WACV51458.2022.00233BibTex
@inproceedings{Petersen2022Style-58150, year={2022}, doi={10.1109/WACV51458.2022.00233}, title={Style Agnostic 3D Reconstruction via Adversarial Style Transfer}, isbn={978-1-66540-915-5}, publisher={IEEE}, address={Piscataway}, booktitle={2022 IEEE Winter Conference on Applications of Computer Vision : WACW 2022 : proceedings : 4 - 8 January 2022, Waikoloa, Hawaii}, pages={2273--2282}, author={Petersen, Felix and Goldlücke, Bastian and Deussen, Oliver and Kuehne, Hilde} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/58150"> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:language>eng</dc:language> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/58150"/> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:contributor>Deussen, Oliver</dc:contributor> <dcterms:title>Style Agnostic 3D Reconstruction via Adversarial Style Transfer</dcterms:title> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2022-07-26T09:28:47Z</dc:date> <dcterms:issued>2022</dcterms:issued> <dc:creator>Deussen, Oliver</dc:creator> <dc:creator>Petersen, Felix</dc:creator> <dc:contributor>Petersen, Felix</dc:contributor> <dc:contributor>Kuehne, Hilde</dc:contributor> <dcterms:abstract xml:lang="eng">Reconstructing the 3D geometry of an object from an image is a major challenge in computer vision. Recently introduced differentiable renderers can be leveraged to learn the 3D geometry of objects from 2D images, but those approaches require additional supervision to enable the renderer to produce an output that can be compared to the input image. This can be scene information or constraints such as object silhouettes, uniform backgrounds, material, texture, and lighting. In this paper, we propose an approach that enables a differentiable rendering-based learning of 3D objects from images with backgrounds without the need for silhouette supervision. Instead of trying to render an image close to the input, we propose an adversarial style-transfer and domain adaptation pipeline that allows to translate the input image domain to the rendered image domain. This allows us to directly compare between a translated image and the differentiable rendering of a 3D object reconstruction in order to train the 3D object reconstruction network. We show that the approach learns 3D geometry from images with backgrounds and provides a better performance than constrained methods for single-view 3D object reconstruction on this task.</dcterms:abstract> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2022-07-26T09:28:47Z</dcterms:available> <dc:contributor>Goldlücke, Bastian</dc:contributor> <dc:creator>Goldlücke, Bastian</dc:creator> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:creator>Kuehne, Hilde</dc:creator> </rdf:Description> </rdf:RDF>