Publikation:

Stochastic Gradient Descent and its Application for Parametrized Boundary Value Problems under Uncertainties

Lade...
Vorschaubild

Dateien

Wolf_2-1as0cw2bsjlzs7.pdf
Wolf_2-1as0cw2bsjlzs7.pdfGröße: 1.64 MBDownloads: 657

Datum

2021

Autor:innen

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

DOI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Link zur Lizenz

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Green
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Bachelorarbeit
Publikationsstatus
Published

Erschienen in

Zusammenfassung

In this thesis we want to give a theoretical and practical introduction to stochastic gradient descent (SGD) methods. In the theoretical part, we prove two fundamental convergence results that hold under certain assumptions, like a strongly convex objective function. The first result covers the convergence behaviour of SGD running with a fixed step size sequence and is expanded to the second result, which deals with SGD running with a diminishing step size sequence. For both cases, we provide an upper bound for the expected optimality gap. At the expense of a concrete convergence rate, we then generalize both results to non-convex objective functions. The practical part of this thesis deals with the application of SGD as a convincing and stable optimizer for parametrized boundary value problems under uncertainties. Firstly, we discretize an ordinary differential equation (ODE) Dirichlet problem using finite differences (FD) and improve the results by using preconditioning techniques and a weighted norm. Secondly, we generalize the results to an elliptic partial differential equation (PDE) Dirichlet problem and aim for a weak solution using a finite element (FE) discretization. For both problems, the SGD algorithm convinces with stable results and provides convergence in expectation.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
510 Mathematik

Schlagwörter

Stochastic Gradient Descent, Boundary Value Problems,

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690WOLF, Florian, 2021. Stochastic Gradient Descent and its Application for Parametrized Boundary Value Problems under Uncertainties [Bachelor thesis]. Konstanz: Universität Konstanz
BibTex
@mastersthesis{Wolf2021Stoch-54423,
  year={2021},
  title={Stochastic Gradient Descent and its Application for Parametrized Boundary Value Problems under Uncertainties},
  address={Konstanz},
  school={Universität Konstanz},
  author={Wolf, Florian}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/54423">
    <dc:contributor>Wolf, Florian</dc:contributor>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/54423/3/Wolf_2-1as0cw2bsjlzs7.pdf"/>
    <dc:language>eng</dc:language>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-07-28T05:57:47Z</dc:date>
    <dcterms:title>Stochastic Gradient Descent and its Application for Parametrized Boundary Value Problems under Uncertainties</dcterms:title>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/54423"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-07-28T05:57:47Z</dcterms:available>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:rights>Attribution-NonCommercial-ShareAlike 4.0 International</dc:rights>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/54423/3/Wolf_2-1as0cw2bsjlzs7.pdf"/>
    <dcterms:issued>2021</dcterms:issued>
    <dc:creator>Wolf, Florian</dc:creator>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by-nc-sa/4.0/"/>
    <dcterms:abstract xml:lang="eng">In this thesis we want to give a theoretical and practical introduction to stochastic gradient descent (SGD) methods. In the theoretical part, we prove two fundamental convergence results that hold under certain assumptions, like a strongly convex objective function. The first result covers the convergence behaviour of SGD running with a fixed step size sequence and is expanded to the second result, which deals with SGD running with a diminishing step size sequence. For both cases, we provide an upper bound for the expected optimality gap. At the expense of a concrete convergence rate, we then generalize both results to non-convex objective functions. The practical part of this thesis deals with the application of SGD as a convincing and stable optimizer for parametrized boundary value problems under uncertainties. Firstly, we discretize an ordinary differential equation (ODE) Dirichlet problem using finite differences (FD) and improve the results by using preconditioning techniques and a weighted norm. Secondly, we generalize the results to an elliptic partial differential equation (PDE) Dirichlet problem and aim for a weak solution using a finite element (FE) discretization. For both problems, the SGD algorithm convinces with stable results and provides convergence in expectation.</dcterms:abstract>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Hochschulschriftenvermerk
Konstanz, Universität Konstanz, Bachelorarbeit, 2021
Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen