Publikation: Compressible Navier-Stokes equations with revised Maxwell's law
Lade...
Dateien
Zu diesem Dokument gibt es keine Dateien.
Datum
2017
Autor:innen
Hu, Yuxi
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published
Erschienen in
Journal of Mathematical Fluid Mechanics. 2017, 19(1), pp. 77-90. ISSN 1422-6928. eISSN 1422-6952. Available under: doi: 10.1007/s00021-016-0266-5
Zusammenfassung
We investigate the compressible Navier-Stokes equations where the constitutive law for the stress tensor given by Maxwell's law is revised to a system of relaxation equations for two parts of the tensor. The global well-posedness is proved as well as the compatibility with the classical compressible Navier-Stokes system in the sense that, for vanishing relaxation parameters, the solutions to the Maxwell system are shown to converge to solutions of the classical system.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
510 Mathematik
Schlagwörter
compressible Navier–Stokes, Maxwell fluid, global existence, singular limit
Konferenz
Rezension
undefined / . - undefined, undefined
Zitieren
ISO 690
HU, Yuxi, Reinhard RACKE, 2017. Compressible Navier-Stokes equations with revised Maxwell's law. In: Journal of Mathematical Fluid Mechanics. 2017, 19(1), pp. 77-90. ISSN 1422-6928. eISSN 1422-6952. Available under: doi: 10.1007/s00021-016-0266-5BibTex
@article{Hu2017Compr-32199, year={2017}, doi={10.1007/s00021-016-0266-5}, title={Compressible Navier-Stokes equations with revised Maxwell's law}, number={1}, volume={19}, issn={1422-6928}, journal={Journal of Mathematical Fluid Mechanics}, pages={77--90}, author={Hu, Yuxi and Racke, Reinhard} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/32199"> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dcterms:abstract xml:lang="eng">We investigate the compressible Navier-Stokes equations where the constitutive law for the stress tensor given by Maxwell's law is revised to a system of relaxation equations for two parts of the tensor. The global well-posedness is proved as well as the compatibility with the classical compressible Navier-Stokes system in the sense that, for vanishing relaxation parameters, the solutions to the Maxwell system are shown to converge to solutions of the classical system.</dcterms:abstract> <dcterms:title>Compressible Navier-Stokes equations with revised Maxwell's law</dcterms:title> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2017-05-08T14:21:35Z</dc:date> <dc:contributor>Racke, Reinhard</dc:contributor> <dc:language>eng</dc:language> <dc:creator>Racke, Reinhard</dc:creator> <dc:creator>Hu, Yuxi</dc:creator> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/32199"/> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2017-05-08T14:21:35Z</dcterms:available> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:contributor>Hu, Yuxi</dc:contributor> <dcterms:issued>2017</dcterms:issued> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> </rdf:Description> </rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja