Publikation:

Unveiling domain wall dynamics of ferrimagnets in thermal magnon currents : competition of angular momentum transfer and entropic torque

Lade...
Vorschaubild

Dateien

Donges_2-1av9cz4ld1hu92.pdf
Donges_2-1av9cz4ld1hu92.pdfGröße: 1.58 MBDownloads: 250

Datum

2020

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

Internationale Patentnummer

Link zur Lizenz

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Hybrid
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

Physical Review Research. American Physical Society (APS). 2020, 2(1), 013293. eISSN 2643-1564. Available under: doi: 10.1103/PhysRevResearch.2.013293

Zusammenfassung

Control of magnetic domain wall motion holds promise for efficient manipulation and transfer of magnetically stored information. Thermal magnon currents, generated by temperature gradients, can be used to move magnetic textures, from domain walls to magnetic vortices and skyrmions. In the past several years, theoretical studies have focused on ferro- and antiferromagnetic spin structures, where domain walls always move toward the hotter end of the thermal gradient. Here we perform numerical studies using atomistic spin dynamics simulations and complementary analytical calculations to derive an equation of motion for the domain wall velocity in ferrimagnets. We demonstrate that in ferrimagnets, domain wall motion under thermal magnon currents shows a much richer dynamics. Below the Walker breakdown, we find that the temperature gradient always pulls the domain wall toward the hot end by minimizing its free energy, in agreement with the observations for ferro- and antiferromagnets in the same regime. Above Walker breakdown, the ferrimagnetic domain wall can show the opposite, counterintuitive behavior of moving toward the cold end. We show that in this case, the motion to the hotter or the colder ends is driven by angular momentum transfer and therefore strongly related to the angular momentum compensation temperature, a unique property of ferrimagnets where the intrinsic angular momentum of the ferrimagnet is zero while the sublattice angular momentum remains finite. In particular, we find that below the compensation temperature the wall moves toward the cold end, whereas above it toward the hot end. Moreover, we find that for ferrimagnets, there is a torque compensation temperature at which the domain wall dynamics shows similar characteristics to antiferromagnets, that is, quasi-inertia-free motion and the absence of Walker breakdown. This finding opens the door for fast control of magnetic domains as given by the antiferromagnetic character while conserving the advantage of ferromagnets in terms of measuring and control by conventional means such as magnetic fields.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
530 Physik

Schlagwörter

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690DONGES, Andreas, Niklas GRIMM, Florian JAKOBS, Severin SELZER, Ulrike RITZMANN, Unai ATXITIA, Ulrich NOWAK, 2020. Unveiling domain wall dynamics of ferrimagnets in thermal magnon currents : competition of angular momentum transfer and entropic torque. In: Physical Review Research. American Physical Society (APS). 2020, 2(1), 013293. eISSN 2643-1564. Available under: doi: 10.1103/PhysRevResearch.2.013293
BibTex
@article{Donges2020Unvei-51065,
  year={2020},
  doi={10.1103/PhysRevResearch.2.013293},
  title={Unveiling domain wall dynamics of ferrimagnets in thermal magnon currents : competition of angular momentum transfer and entropic torque},
  number={1},
  volume={2},
  journal={Physical Review Research},
  author={Donges, Andreas and Grimm, Niklas and Jakobs, Florian and Selzer, Severin and Ritzmann, Ulrike and Atxitia, Unai and Nowak, Ulrich},
  note={Article Number: 013293}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/51065">
    <dc:contributor>Selzer, Severin</dc:contributor>
    <dc:creator>Grimm, Niklas</dc:creator>
    <dc:contributor>Jakobs, Florian</dc:contributor>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41"/>
    <dcterms:abstract xml:lang="eng">Control of magnetic domain wall motion holds promise for efficient manipulation and transfer of magnetically stored information. Thermal magnon currents, generated by temperature gradients, can be used to move magnetic textures, from domain walls to magnetic vortices and skyrmions. In the past several years, theoretical studies have focused on ferro- and antiferromagnetic spin structures, where domain walls always move toward the hotter end of the thermal gradient. Here we perform numerical studies using atomistic spin dynamics simulations and complementary analytical calculations to derive an equation of motion for the domain wall velocity in ferrimagnets. We demonstrate that in ferrimagnets, domain wall motion under thermal magnon currents shows a much richer dynamics. Below the Walker breakdown, we find that the temperature gradient always pulls the domain wall toward the hot end by minimizing its free energy, in agreement with the observations for ferro- and antiferromagnets in the same regime. Above Walker breakdown, the ferrimagnetic domain wall can show the opposite, counterintuitive behavior of moving toward the cold end. We show that in this case, the motion to the hotter or the colder ends is driven by angular momentum transfer and therefore strongly related to the angular momentum compensation temperature, a unique property of ferrimagnets where the intrinsic angular momentum of the ferrimagnet is zero while the sublattice angular momentum remains finite. In particular, we find that below the compensation temperature the wall moves toward the cold end, whereas above it toward the hot end. Moreover, we find that for ferrimagnets, there is a torque compensation temperature at which the domain wall dynamics shows similar characteristics to antiferromagnets, that is, quasi-inertia-free motion and the absence of Walker breakdown. This finding opens the door for fast control of magnetic domains as given by the antiferromagnetic character while conserving the advantage of ferromagnets in terms of measuring and control by conventional means such as magnetic fields.</dcterms:abstract>
    <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by/4.0/"/>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/51065/1/Donges_2-1av9cz4ld1hu92.pdf"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41"/>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dcterms:issued>2020</dcterms:issued>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2020-09-28T14:12:13Z</dc:date>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/51065/1/Donges_2-1av9cz4ld1hu92.pdf"/>
    <dc:contributor>Donges, Andreas</dc:contributor>
    <dc:language>eng</dc:language>
    <dc:contributor>Atxitia, Unai</dc:contributor>
    <dc:creator>Nowak, Ulrich</dc:creator>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2020-09-28T14:12:13Z</dcterms:available>
    <dc:creator>Donges, Andreas</dc:creator>
    <dc:creator>Ritzmann, Ulrike</dc:creator>
    <dc:creator>Atxitia, Unai</dc:creator>
    <dc:rights>Attribution 4.0 International</dc:rights>
    <dc:contributor>Nowak, Ulrich</dc:contributor>
    <dc:creator>Jakobs, Florian</dc:creator>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/51065"/>
    <dc:creator>Selzer, Severin</dc:creator>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:contributor>Ritzmann, Ulrike</dc:contributor>
    <dc:contributor>Grimm, Niklas</dc:contributor>
    <dcterms:title>Unveiling domain wall dynamics of ferrimagnets in thermal magnon currents : competition of angular momentum transfer and entropic torque</dcterms:title>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Ja
Diese Publikation teilen