Publikation:

Prediction of Failures in the Air Pressure System of Scania Trucks Using a Random Forest and Feature Engineering

Lade...
Vorschaubild

Dateien

Zu diesem Dokument gibt es keine Dateien.

Datum

2016

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

URI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Beitrag zu einem Konferenzband
Publikationsstatus
Published

Erschienen in

BOSTRÖM, Henrik, ed., Arno KNOBBE, ed., Carlos SOARES, ed., Panagiotis PAPAPETROU, ed.. Advances in Intelligent Data Analysis XV. Cham: Springer International Publishing, 2016, pp. 398-402. Lecture Notes in Computer Science. 9897. ISSN 0302-9743. eISSN 1611-3349. ISBN 978-3-319-46348-3. Available under: doi: 10.1007/978-3-319-46349-0_36

Zusammenfassung

This paper demonstrates an approach in data analysis to minimize overall maintenance costs for the air pressure system of Scania trucks. Feature creation on histograms was used. Randomly chosen subsets of attributes were then evaluated to generate an order and a final subset of features. Finally, a Random Forest was applied and fine-tuned. The results clearly show that data analysis in the field is beneficial and improves upon the naive approaches of checking every truck or no truck until failure.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
004 Informatik

Schlagwörter

Data mining, Feature extraction, Dimension reduction, Random forest

Konferenz

Advances in Intelligent Data Analysis XV : 15th International Symposium, IDA 2016, 13. Okt. 2016 - 15. Okt. 2016, Stockholm, Sweden
Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690GONDEK, Christopher, Daniel HAFNER, Oliver R. SAMPSON, 2016. Prediction of Failures in the Air Pressure System of Scania Trucks Using a Random Forest and Feature Engineering. Advances in Intelligent Data Analysis XV : 15th International Symposium, IDA 2016. Stockholm, Sweden, 13. Okt. 2016 - 15. Okt. 2016. In: BOSTRÖM, Henrik, ed., Arno KNOBBE, ed., Carlos SOARES, ed., Panagiotis PAPAPETROU, ed.. Advances in Intelligent Data Analysis XV. Cham: Springer International Publishing, 2016, pp. 398-402. Lecture Notes in Computer Science. 9897. ISSN 0302-9743. eISSN 1611-3349. ISBN 978-3-319-46348-3. Available under: doi: 10.1007/978-3-319-46349-0_36
BibTex
@inproceedings{Gondek2016Predi-37212,
  year={2016},
  doi={10.1007/978-3-319-46349-0_36},
  title={Prediction of Failures in the Air Pressure System of Scania Trucks Using a Random Forest and Feature Engineering},
  number={9897},
  isbn={978-3-319-46348-3},
  issn={0302-9743},
  publisher={Springer International Publishing},
  address={Cham},
  series={Lecture Notes in Computer Science},
  booktitle={Advances in Intelligent Data Analysis XV},
  pages={398--402},
  editor={Boström, Henrik and Knobbe, Arno and Soares, Carlos and Papapetrou, Panagiotis},
  author={Gondek, Christopher and Hafner, Daniel and Sampson, Oliver R.}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/37212">
    <dc:contributor>Sampson, Oliver R.</dc:contributor>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/37212"/>
    <dcterms:title>Prediction of Failures in the Air Pressure System of Scania Trucks Using a Random Forest and Feature Engineering</dcterms:title>
    <dc:contributor>Gondek, Christopher</dc:contributor>
    <dc:creator>Hafner, Daniel</dc:creator>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:creator>Gondek, Christopher</dc:creator>
    <dc:creator>Sampson, Oliver R.</dc:creator>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:contributor>Hafner, Daniel</dc:contributor>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2017-02-08T10:36:45Z</dc:date>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2017-02-08T10:36:45Z</dcterms:available>
    <dc:language>eng</dc:language>
    <dcterms:issued>2016</dcterms:issued>
    <dcterms:abstract xml:lang="eng">This paper demonstrates an approach in data analysis to minimize overall maintenance costs for the air pressure system of Scania trucks. Feature creation on histograms was used. Randomly chosen subsets of attributes were then evaluated to generate an order and a final subset of features. Finally, a Random Forest was applied and fine-tuned. The results clearly show that data analysis in the field is beneficial and improves upon the naive approaches of checking every truck or no truck until failure.</dcterms:abstract>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen