Publikation: Prediction of Failures in the Air Pressure System of Scania Trucks Using a Random Forest and Feature Engineering
Lade...
Dateien
Zu diesem Dokument gibt es keine Dateien.
Datum
2016
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Beitrag zu einem Konferenzband
Publikationsstatus
Published
Erschienen in
BOSTRÖM, Henrik, ed., Arno KNOBBE, ed., Carlos SOARES, ed., Panagiotis PAPAPETROU, ed.. Advances in Intelligent Data Analysis XV. Cham: Springer International Publishing, 2016, pp. 398-402. Lecture Notes in Computer Science. 9897. ISSN 0302-9743. eISSN 1611-3349. ISBN 978-3-319-46348-3. Available under: doi: 10.1007/978-3-319-46349-0_36
Zusammenfassung
This paper demonstrates an approach in data analysis to minimize overall maintenance costs for the air pressure system of Scania trucks. Feature creation on histograms was used. Randomly chosen subsets of attributes were then evaluated to generate an order and a final subset of features. Finally, a Random Forest was applied and fine-tuned. The results clearly show that data analysis in the field is beneficial and improves upon the naive approaches of checking every truck or no truck until failure.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
004 Informatik
Schlagwörter
Data mining, Feature extraction, Dimension reduction, Random forest
Konferenz
Advances in Intelligent Data Analysis XV : 15th International Symposium, IDA 2016, 13. Okt. 2016 - 15. Okt. 2016, Stockholm, Sweden
Rezension
undefined / . - undefined, undefined
Zitieren
ISO 690
GONDEK, Christopher, Daniel HAFNER, Oliver R. SAMPSON, 2016. Prediction of Failures in the Air Pressure System of Scania Trucks Using a Random Forest and Feature Engineering. Advances in Intelligent Data Analysis XV : 15th International Symposium, IDA 2016. Stockholm, Sweden, 13. Okt. 2016 - 15. Okt. 2016. In: BOSTRÖM, Henrik, ed., Arno KNOBBE, ed., Carlos SOARES, ed., Panagiotis PAPAPETROU, ed.. Advances in Intelligent Data Analysis XV. Cham: Springer International Publishing, 2016, pp. 398-402. Lecture Notes in Computer Science. 9897. ISSN 0302-9743. eISSN 1611-3349. ISBN 978-3-319-46348-3. Available under: doi: 10.1007/978-3-319-46349-0_36BibTex
@inproceedings{Gondek2016Predi-37212, year={2016}, doi={10.1007/978-3-319-46349-0_36}, title={Prediction of Failures in the Air Pressure System of Scania Trucks Using a Random Forest and Feature Engineering}, number={9897}, isbn={978-3-319-46348-3}, issn={0302-9743}, publisher={Springer International Publishing}, address={Cham}, series={Lecture Notes in Computer Science}, booktitle={Advances in Intelligent Data Analysis XV}, pages={398--402}, editor={Boström, Henrik and Knobbe, Arno and Soares, Carlos and Papapetrou, Panagiotis}, author={Gondek, Christopher and Hafner, Daniel and Sampson, Oliver R.} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/37212"> <dc:contributor>Sampson, Oliver R.</dc:contributor> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <foaf:homepage rdf:resource="http://localhost:8080/"/> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/37212"/> <dcterms:title>Prediction of Failures in the Air Pressure System of Scania Trucks Using a Random Forest and Feature Engineering</dcterms:title> <dc:contributor>Gondek, Christopher</dc:contributor> <dc:creator>Hafner, Daniel</dc:creator> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:creator>Gondek, Christopher</dc:creator> <dc:creator>Sampson, Oliver R.</dc:creator> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:contributor>Hafner, Daniel</dc:contributor> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2017-02-08T10:36:45Z</dc:date> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2017-02-08T10:36:45Z</dcterms:available> <dc:language>eng</dc:language> <dcterms:issued>2016</dcterms:issued> <dcterms:abstract xml:lang="eng">This paper demonstrates an approach in data analysis to minimize overall maintenance costs for the air pressure system of Scania trucks. Feature creation on histograms was used. Randomly chosen subsets of attributes were then evaluated to generate an order and a final subset of features. Finally, a Random Forest was applied and fine-tuned. The results clearly show that data analysis in the field is beneficial and improves upon the naive approaches of checking every truck or no truck until failure.</dcterms:abstract> </rdf:Description> </rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja