SOMFlow : Guided Exploratory Cluster Analysis with Self-Organizing Maps and Analytic Provenance

Lade...
Vorschaubild
Dateien
Sacha_2-1bb9sgn9mm19s7.pdf
Sacha_2-1bb9sgn9mm19s7.pdfGröße: 477.92 KBDownloads: 870
Datum
2018
Herausgeber:innen
Kontakt
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
ArXiv-ID
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Open Access Green
Core Facility der Universität Konstanz
Gesperrt bis
Titel in einer weiteren Sprache
Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published
Erschienen in
IEEE Transactions on Visualization and Computer Graphics. 2018, 24(1), pp. 120-130. ISSN 1077-2626. eISSN 1941-0506. Available under: doi: 10.1109/TVCG.2017.2744805
Zusammenfassung

Clustering is a core building block for data analysis, aiming to extract otherwise hidden structures and relations from raw datasets, such as particular groups that can be effectively related, compared, and interpreted. A plethora of visual-interactive cluster analysis techniques has been proposed to date, however, arriving at useful clusterings often requires several rounds of user interactions to fine-tune the data preprocessing and algorithms. We present a multi-stage Visual Analytics (VA) approach for iterative cluster refinement together with an implementation (SOMFlow) that uses Self-Organizing Maps (SOM) to analyze time series data. It supports exploration by offering the analyst a visual platform to analyze intermediate results, adapt the underlying computations, iteratively partition the data, and to reflect previous analytical activities. The history of previous decisions is explicitly visualized within a flow graph, allowing to compare earlier cluster refinements and to explore relations. We further leverage quality and interestingness measures to guide the analyst in the discovery of useful patterns, relations, and data partitions. We conducted two pair analytics experiments together with a subject matter expert in speech intonation research to demonstrate that the approach is effective for interactive data analysis, supporting enhanced understanding of clustering results as well as the interactive process itself.

Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
004 Informatik
Schlagwörter
Konferenz
Rezension
undefined / . - undefined, undefined
Forschungsvorhaben
Organisationseinheiten
Zeitschriftenheft
Datensätze
Zitieren
ISO 690SACHA, Dominik, Matthias KRAUS, Jürgen BERNARD, Michael BEHRISCH, Tobias SCHRECK, Yuki ASANO, Daniel A. KEIM, 2018. SOMFlow : Guided Exploratory Cluster Analysis with Self-Organizing Maps and Analytic Provenance. In: IEEE Transactions on Visualization and Computer Graphics. 2018, 24(1), pp. 120-130. ISSN 1077-2626. eISSN 1941-0506. Available under: doi: 10.1109/TVCG.2017.2744805
BibTex
@article{Sacha2018-01SOMFl-41125,
  year={2018},
  doi={10.1109/TVCG.2017.2744805},
  title={SOMFlow : Guided Exploratory Cluster Analysis with Self-Organizing Maps and Analytic Provenance},
  number={1},
  volume={24},
  issn={1077-2626},
  journal={IEEE Transactions on Visualization and Computer Graphics},
  pages={120--130},
  author={Sacha, Dominik and Kraus, Matthias and Bernard, Jürgen and Behrisch, Michael and Schreck, Tobias and Asano, Yuki and Keim, Daniel A.}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41125">
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:contributor>Keim, Daniel A.</dc:contributor>
    <dc:creator>Bernard, Jürgen</dc:creator>
    <dc:creator>Keim, Daniel A.</dc:creator>
    <dc:contributor>Kraus, Matthias</dc:contributor>
    <dc:rights>terms-of-use</dc:rights>
    <dcterms:title>SOMFlow : Guided Exploratory Cluster Analysis with Self-Organizing Maps and Analytic Provenance</dcterms:title>
    <dc:contributor>Bernard, Jürgen</dc:contributor>
    <dc:contributor>Asano, Yuki</dc:contributor>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/41125/1/Sacha_2-1bb9sgn9mm19s7.pdf"/>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/41125"/>
    <dc:creator>Behrisch, Michael</dc:creator>
    <dc:creator>Asano, Yuki</dc:creator>
    <dc:contributor>Schreck, Tobias</dc:contributor>
    <dc:creator>Schreck, Tobias</dc:creator>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/41125/1/Sacha_2-1bb9sgn9mm19s7.pdf"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2018-01-24T10:04:53Z</dc:date>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dcterms:abstract xml:lang="eng">Clustering is a core building block for data analysis, aiming to extract otherwise hidden structures and relations from raw datasets, such as particular groups that can be effectively related, compared, and interpreted. A plethora of visual-interactive cluster analysis techniques has been proposed to date, however, arriving at useful clusterings often requires several rounds of user interactions to fine-tune the data preprocessing and algorithms. We present a multi-stage Visual Analytics (VA) approach for iterative cluster refinement together with an implementation (SOMFlow) that uses Self-Organizing Maps (SOM) to analyze time series data. It supports exploration by offering the analyst a visual platform to analyze intermediate results, adapt the underlying computations, iteratively partition the data, and to reflect previous analytical activities. The history of previous decisions is explicitly visualized within a flow graph, allowing to compare earlier cluster refinements and to explore relations. We further leverage quality and interestingness measures to guide the analyst in the discovery of useful patterns, relations, and data partitions. We conducted two pair analytics experiments together with a subject matter expert in speech intonation research to demonstrate that the approach is effective for interactive data analysis, supporting enhanced understanding of clustering results as well as the interactive process itself.</dcterms:abstract>
    <dc:contributor>Sacha, Dominik</dc:contributor>
    <dc:contributor>Behrisch, Michael</dc:contributor>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2018-01-24T10:04:53Z</dcterms:available>
    <dc:creator>Sacha, Dominik</dc:creator>
    <dc:language>eng</dc:language>
    <dcterms:issued>2018-01</dcterms:issued>
    <dc:creator>Kraus, Matthias</dc:creator>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
  </rdf:Description>
</rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Kontakt
URL der Originalveröffentl.
Prüfdatum der URL
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Ja
Diese Publikation teilen