Publikation: Uncertainty Propagation and Trust Building in Visual Analytics
Dateien
Datum
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
Visual analytics combines human and machine abilities to generate new knowledge from data. Within this process, uncertainty often plays an important role in hindering the sensemaking process and analysis tasks. On the machine side, uncertainty builds up from the data source level to the visual output. On the human side, these uncertainties often result in “lack of knowledge or trust” or “overtrust.” Such human’s biased interpretation can be resolved if we can measure uncertainties and users’ trust at each stage and provide proper mitigation in time. We believe that we can achieve this by tracing data provenance and analytic provenance accurately and reflecting them on the system output. Therefore, our first goal is to identify the roles of uncertainty and trust along the entire visual analytics knowledge generation process. In addition, we aim to capture how uncertainty and trust can be derived from data and analytic provenance. In this workshop, we introduce a framework that describes the roles of uncertainty and trust, and introduce open research questions with potential solutions.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
SACHA, Dominik, Hansi SENARATNE, Bum Chul KWON, Daniel A. KEIM, 2014. Uncertainty Propagation and Trust Building in Visual Analytics. IEEE VIS 2014. Paris, 9. Nov. 2014 - 14. Nov. 2014. In: Provenance for Sensemaking : IEEE VIS 2014 Workshop, 10 November 2014, Paris, France. 2014BibTex
@inproceedings{Sacha2014Uncer-30217, year={2014}, title={Uncertainty Propagation and Trust Building in Visual Analytics}, url={http://www.cs.mdx.ac.uk/prov4sense/papers/updb_provenance_sacha_2014.pdf}, booktitle={Provenance for Sensemaking : IEEE VIS 2014 Workshop, 10 November 2014, Paris, France}, author={Sacha, Dominik and Senaratne, Hansi and Kwon, Bum Chul and Keim, Daniel A.} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/30217"> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:contributor>Kwon, Bum Chul</dc:contributor> <dc:creator>Sacha, Dominik</dc:creator> <dc:rights>terms-of-use</dc:rights> <dc:contributor>Sacha, Dominik</dc:contributor> <dc:contributor>Senaratne, Hansi</dc:contributor> <dc:creator>Senaratne, Hansi</dc:creator> <dc:creator>Kwon, Bum Chul</dc:creator> <dc:creator>Keim, Daniel A.</dc:creator> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2015-03-11T15:13:22Z</dc:date> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2015-03-11T15:13:22Z</dcterms:available> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:contributor>Keim, Daniel A.</dc:contributor> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/30217/1/Sacha_0-284009.pdf"/> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/30217/1/Sacha_0-284009.pdf"/> <dcterms:issued>2014</dcterms:issued> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dcterms:abstract xml:lang="eng">Visual analytics combines human and machine abilities to generate new knowledge from data. Within this process, uncertainty often plays an important role in hindering the sensemaking process and analysis tasks. On the machine side, uncertainty builds up from the data source level to the visual output. On the human side, these uncertainties often result in “lack of knowledge or trust” or “overtrust.” Such human’s biased interpretation can be resolved if we can measure uncertainties and users’ trust at each stage and provide proper mitigation in time. We believe that we can achieve this by tracing data provenance and analytic provenance accurately and reflecting them on the system output. Therefore, our first goal is to identify the roles of uncertainty and trust along the entire visual analytics knowledge generation process. In addition, we aim to capture how uncertainty and trust can be derived from data and analytic provenance. In this workshop, we introduce a framework that describes the roles of uncertainty and trust, and introduce open research questions with potential solutions.</dcterms:abstract> <dc:language>eng</dc:language> <dcterms:title>Uncertainty Propagation and Trust Building in Visual Analytics</dcterms:title> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/30217"/> </rdf:Description> </rdf:RDF>