Publikation:

Uncertainty Propagation and Trust Building in Visual Analytics

Lade...
Vorschaubild

Dateien

Sacha_0-284009.pdf
Sacha_0-284009.pdfGröße: 138.43 KBDownloads: 670

Datum

2014

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

DOI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Green
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Beitrag zu einem Konferenzband
Publikationsstatus
Published

Erschienen in

Provenance for Sensemaking : IEEE VIS 2014 Workshop, 10 November 2014, Paris, France. 2014

Zusammenfassung

Visual analytics combines human and machine abilities to generate new knowledge from data. Within this process, uncertainty often plays an important role in hindering the sensemaking process and analysis tasks. On the machine side, uncertainty builds up from the data source level to the visual output. On the human side, these uncertainties often result in “lack of knowledge or trust” or “overtrust.” Such human’s biased interpretation can be resolved if we can measure uncertainties and users’ trust at each stage and provide proper mitigation in time. We believe that we can achieve this by tracing data provenance and analytic provenance accurately and reflecting them on the system output. Therefore, our first goal is to identify the roles of uncertainty and trust along the entire visual analytics knowledge generation process. In addition, we aim to capture how uncertainty and trust can be derived from data and analytic provenance. In this workshop, we introduce a framework that describes the roles of uncertainty and trust, and introduce open research questions with potential solutions.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
004 Informatik

Schlagwörter

Konferenz

IEEE VIS 2014, 9. Nov. 2014 - 14. Nov. 2014, Paris
Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690SACHA, Dominik, Hansi SENARATNE, Bum Chul KWON, Daniel A. KEIM, 2014. Uncertainty Propagation and Trust Building in Visual Analytics. IEEE VIS 2014. Paris, 9. Nov. 2014 - 14. Nov. 2014. In: Provenance for Sensemaking : IEEE VIS 2014 Workshop, 10 November 2014, Paris, France. 2014
BibTex
@inproceedings{Sacha2014Uncer-30217,
  year={2014},
  title={Uncertainty Propagation and Trust Building in Visual Analytics},
  url={http://www.cs.mdx.ac.uk/prov4sense/papers/updb_provenance_sacha_2014.pdf},
  booktitle={Provenance for Sensemaking : IEEE VIS 2014 Workshop, 10 November 2014, Paris, France},
  author={Sacha, Dominik and Senaratne, Hansi and Kwon, Bum Chul and Keim, Daniel A.}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/30217">
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:contributor>Kwon, Bum Chul</dc:contributor>
    <dc:creator>Sacha, Dominik</dc:creator>
    <dc:rights>terms-of-use</dc:rights>
    <dc:contributor>Sacha, Dominik</dc:contributor>
    <dc:contributor>Senaratne, Hansi</dc:contributor>
    <dc:creator>Senaratne, Hansi</dc:creator>
    <dc:creator>Kwon, Bum Chul</dc:creator>
    <dc:creator>Keim, Daniel A.</dc:creator>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2015-03-11T15:13:22Z</dc:date>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2015-03-11T15:13:22Z</dcterms:available>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:contributor>Keim, Daniel A.</dc:contributor>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/30217/1/Sacha_0-284009.pdf"/>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/30217/1/Sacha_0-284009.pdf"/>
    <dcterms:issued>2014</dcterms:issued>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dcterms:abstract xml:lang="eng">Visual analytics combines human and machine abilities to generate new knowledge from data. Within this process, uncertainty often plays an important role in hindering the sensemaking process and analysis tasks. On the machine side, uncertainty builds up from the data source level to the visual output. On the human side, these uncertainties often result in “lack of knowledge or trust” or “overtrust.” Such human’s biased interpretation can be resolved if we can measure uncertainties and users’ trust at each stage and provide proper mitigation in time. We believe that we can achieve this by tracing data provenance and analytic provenance accurately and reflecting them on the system output. Therefore, our first goal is to identify the roles of uncertainty and trust along the entire visual analytics knowledge generation process. In addition, we aim to capture how uncertainty and trust can be derived from data and analytic provenance. In this workshop, we introduce a framework that describes the roles of uncertainty and trust, and introduce open research questions with potential solutions.</dcterms:abstract>
    <dc:language>eng</dc:language>
    <dcterms:title>Uncertainty Propagation and Trust Building in Visual Analytics</dcterms:title>
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/30217"/>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt

Prüfdatum der URL

2015-03-11

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen