Publikation: BABEL: Bodies, Action and Behavior with English Labels
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
Understanding the semantics of human movement – the what, how and why of the movement – is an important problem that requires datasets of human actions with semantic labels. Existing datasets take one of two approaches. Large-scale video datasets contain many action labels but do not contain ground-truth 3D human motion. Alternatively, motion-capture (mocap) datasets have precise body motions but are limited to a small number of actions. To address this, we present BABEL, a large dataset with language labels describing the actions being performed in mocap sequences. BABEL consists of language labels for over 43 hours of mocap sequences from AMASS, containing over 250 unique actions. Each action label in BABEL is precisely aligned with the duration of the corresponding action in the mocap sequence. BABELalso allows overlap of multiple actions, that may each span different durations. This results in a total of over 66000 action segments. The dense annotations can be leveraged for tasks like action recognition, temporal localization, motion synthesis, etc. To demonstrate the value of BABEL as a benchmark, we evaluate the performance of models on 3D action recognition. We demonstrate that BABEL poses interesting learning challenges that are applicable to real-world scenarios, and can serve as a useful benchmark for progress in 3D action recognition. The dataset, baseline methods, and evaluation code are available and supported for academic research purposes at https://babel.is.tue.mpg.de/.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
PUNNAKKAL, Abhinanda R., Arjun CHANDRASEKARAN, Nikos ATHANASIOU, M. Alejandra QUIRÓS-RAMÍREZ, Michael J. BLACK, 2021. BABEL: Bodies, Action and Behavior with English Labels. IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Nashville, TN, USA, 20. Juni 2021 - 25. Juni 2021. In: Proceedings of 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway, NJ: IEEE, 2021, pp. 722-731. ISBN 978-1-66544-509-2. Available under: doi: 10.1109/CVPR46437.2021.00078BibTex
@inproceedings{Punnakkal2021BABEL-56520, year={2021}, doi={10.1109/CVPR46437.2021.00078}, title={BABEL: Bodies, Action and Behavior with English Labels}, isbn={978-1-66544-509-2}, publisher={IEEE}, address={Piscataway, NJ}, booktitle={Proceedings of 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition}, pages={722--731}, author={Punnakkal, Abhinanda R. and Chandrasekaran, Arjun and Athanasiou, Nikos and Quirós-Ramírez, M. Alejandra and Black, Michael J.} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/56520"> <dcterms:title>BABEL: Bodies, Action and Behavior with English Labels</dcterms:title> <dc:creator>Punnakkal, Abhinanda R.</dc:creator> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:creator>Black, Michael J.</dc:creator> <dcterms:abstract xml:lang="eng">Understanding the semantics of human movement – the what, how and why of the movement – is an important problem that requires datasets of human actions with semantic labels. Existing datasets take one of two approaches. Large-scale video datasets contain many action labels but do not contain ground-truth 3D human motion. Alternatively, motion-capture (mocap) datasets have precise body motions but are limited to a small number of actions. To address this, we present BABEL, a large dataset with language labels describing the actions being performed in mocap sequences. BABEL consists of language labels for over 43 hours of mocap sequences from AMASS, containing over 250 unique actions. Each action label in BABEL is precisely aligned with the duration of the corresponding action in the mocap sequence. BABELalso allows overlap of multiple actions, that may each span different durations. This results in a total of over 66000 action segments. The dense annotations can be leveraged for tasks like action recognition, temporal localization, motion synthesis, etc. To demonstrate the value of BABEL as a benchmark, we evaluate the performance of models on 3D action recognition. We demonstrate that BABEL poses interesting learning challenges that are applicable to real-world scenarios, and can serve as a useful benchmark for progress in 3D action recognition. The dataset, baseline methods, and evaluation code are available and supported for academic research purposes at https://babel.is.tue.mpg.de/.</dcterms:abstract> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2022-02-10T13:33:17Z</dc:date> <dc:contributor>Athanasiou, Nikos</dc:contributor> <dc:creator>Athanasiou, Nikos</dc:creator> <dc:creator>Quirós-Ramírez, M. Alejandra</dc:creator> <dc:contributor>Punnakkal, Abhinanda R.</dc:contributor> <dc:creator>Chandrasekaran, Arjun</dc:creator> <dc:contributor>Chandrasekaran, Arjun</dc:contributor> <dc:contributor>Quirós-Ramírez, M. Alejandra</dc:contributor> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2022-02-10T13:33:17Z</dcterms:available> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/56520"/> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:contributor>Black, Michael J.</dc:contributor> <dcterms:issued>2021</dcterms:issued> <dc:language>eng</dc:language> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> </rdf:Description> </rdf:RDF>