Publikation:

Visual Analytics for Topic Model Optimization based on User-Steerable Speculative Execution

Lade...
Vorschaubild

Dateien

El-Assady_2-1cwc6z3rv48981.pdf
El-Assady_2-1cwc6z3rv48981.pdfGröße: 429.8 KBDownloads: 838

Datum

2019

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Green
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

IEEE Transactions on Visualization and Computer Graphics. 2019, 25(1), pp. 374-384. ISSN 1077-2626. eISSN 1941-0506. Available under: doi: 10.1109/TVCG.2018.2864769

Zusammenfassung

To effectively assess the potential consequences of human interventions in model-driven analytics systems, we establish the concept of speculative execution as a visual analytics paradigm for creating user-steerable preview mechanisms. This paper presents an explainable, mixed-initiative topic modeling framework that integrates speculative execution into the algorithmic decisionmaking process. Our approach visualizes the model-space of our novel incremental hierarchical topic modeling algorithm, unveiling its inner-workings. We support the active incorporation of the user's domain knowledge in every step through explicit model manipulation interactions. In addition, users can initialize the model with expected topic seeds, the backbone priors. For a more targeted optimization, the modeling process automatically triggers a speculative execution of various optimization strategies, and requests feedback whenever the measured model quality deteriorates. Users compare the proposed optimizations to the current model state and preview their effect on the next model iterations, before applying one of them. This supervised human-in-the-loop process targets maximum improvement for minimum feedback and has proven to be effective in three independent studies that confirm topic model quality improvements.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
004 Informatik

Schlagwörter

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690EL-ASSADY, Mennatallah, Fabian SPERRLE, Oliver DEUSSEN, Daniel A. KEIM, Christopher COLLINS, 2019. Visual Analytics for Topic Model Optimization based on User-Steerable Speculative Execution. In: IEEE Transactions on Visualization and Computer Graphics. 2019, 25(1), pp. 374-384. ISSN 1077-2626. eISSN 1941-0506. Available under: doi: 10.1109/TVCG.2018.2864769
BibTex
@article{ElAssady2019-01Visua-43555,
  year={2019},
  doi={10.1109/TVCG.2018.2864769},
  title={Visual Analytics for Topic Model Optimization based on User-Steerable Speculative Execution},
  number={1},
  volume={25},
  issn={1077-2626},
  journal={IEEE Transactions on Visualization and Computer Graphics},
  pages={374--384},
  author={El-Assady, Mennatallah and Sperrle, Fabian and Deussen, Oliver and Keim, Daniel A. and Collins, Christopher}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/43555">
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/43555"/>
    <dc:contributor>Collins, Christopher</dc:contributor>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2018-10-17T07:29:56Z</dc:date>
    <dc:contributor>Keim, Daniel A.</dc:contributor>
    <dc:contributor>El-Assady, Mennatallah</dc:contributor>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2018-10-17T07:29:56Z</dcterms:available>
    <dcterms:issued>2019-01</dcterms:issued>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/43555/1/El-Assady_2-1cwc6z3rv48981.pdf"/>
    <dc:language>eng</dc:language>
    <dc:creator>Deussen, Oliver</dc:creator>
    <dc:contributor>Deussen, Oliver</dc:contributor>
    <dc:creator>Sperrle, Fabian</dc:creator>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:creator>Keim, Daniel A.</dc:creator>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/43555/1/El-Assady_2-1cwc6z3rv48981.pdf"/>
    <dc:creator>Collins, Christopher</dc:creator>
    <dc:creator>El-Assady, Mennatallah</dc:creator>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:rights>terms-of-use</dc:rights>
    <dc:contributor>Sperrle, Fabian</dc:contributor>
    <dcterms:title>Visual Analytics for Topic Model Optimization based on User-Steerable Speculative Execution</dcterms:title>
    <dcterms:abstract xml:lang="eng">To effectively assess the potential consequences of human interventions in model-driven analytics systems, we establish the concept of speculative execution as a visual analytics paradigm for creating user-steerable preview mechanisms. This paper presents an explainable, mixed-initiative topic modeling framework that integrates speculative execution into the algorithmic decisionmaking process. Our approach visualizes the model-space of our novel incremental hierarchical topic modeling algorithm, unveiling its inner-workings. We support the active incorporation of the user's domain knowledge in every step through explicit model manipulation interactions. In addition, users can initialize the model with expected topic seeds, the backbone priors. For a more targeted optimization, the modeling process automatically triggers a speculative execution of various optimization strategies, and requests feedback whenever the measured model quality deteriorates. Users compare the proposed optimizations to the current model state and preview their effect on the next model iterations, before applying one of them. This supervised human-in-the-loop process targets maximum improvement for minimum feedback and has proven to be effective in three independent studies that confirm topic model quality improvements.</dcterms:abstract>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Ja
Diese Publikation teilen