Publikation: Visual Analytics for Topic Model Optimization based on User-Steerable Speculative Execution
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
To effectively assess the potential consequences of human interventions in model-driven analytics systems, we establish the concept of speculative execution as a visual analytics paradigm for creating user-steerable preview mechanisms. This paper presents an explainable, mixed-initiative topic modeling framework that integrates speculative execution into the algorithmic decisionmaking process. Our approach visualizes the model-space of our novel incremental hierarchical topic modeling algorithm, unveiling its inner-workings. We support the active incorporation of the user's domain knowledge in every step through explicit model manipulation interactions. In addition, users can initialize the model with expected topic seeds, the backbone priors. For a more targeted optimization, the modeling process automatically triggers a speculative execution of various optimization strategies, and requests feedback whenever the measured model quality deteriorates. Users compare the proposed optimizations to the current model state and preview their effect on the next model iterations, before applying one of them. This supervised human-in-the-loop process targets maximum improvement for minimum feedback and has proven to be effective in three independent studies that confirm topic model quality improvements.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
EL-ASSADY, Mennatallah, Fabian SPERRLE, Oliver DEUSSEN, Daniel A. KEIM, Christopher COLLINS, 2019. Visual Analytics for Topic Model Optimization based on User-Steerable Speculative Execution. In: IEEE Transactions on Visualization and Computer Graphics. 2019, 25(1), pp. 374-384. ISSN 1077-2626. eISSN 1941-0506. Available under: doi: 10.1109/TVCG.2018.2864769BibTex
@article{ElAssady2019-01Visua-43555, year={2019}, doi={10.1109/TVCG.2018.2864769}, title={Visual Analytics for Topic Model Optimization based on User-Steerable Speculative Execution}, number={1}, volume={25}, issn={1077-2626}, journal={IEEE Transactions on Visualization and Computer Graphics}, pages={374--384}, author={El-Assady, Mennatallah and Sperrle, Fabian and Deussen, Oliver and Keim, Daniel A. and Collins, Christopher} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/43555"> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/43555"/> <dc:contributor>Collins, Christopher</dc:contributor> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2018-10-17T07:29:56Z</dc:date> <dc:contributor>Keim, Daniel A.</dc:contributor> <dc:contributor>El-Assady, Mennatallah</dc:contributor> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2018-10-17T07:29:56Z</dcterms:available> <dcterms:issued>2019-01</dcterms:issued> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/43555/1/El-Assady_2-1cwc6z3rv48981.pdf"/> <dc:language>eng</dc:language> <dc:creator>Deussen, Oliver</dc:creator> <dc:contributor>Deussen, Oliver</dc:contributor> <dc:creator>Sperrle, Fabian</dc:creator> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:creator>Keim, Daniel A.</dc:creator> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/43555/1/El-Assady_2-1cwc6z3rv48981.pdf"/> <dc:creator>Collins, Christopher</dc:creator> <dc:creator>El-Assady, Mennatallah</dc:creator> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:rights>terms-of-use</dc:rights> <dc:contributor>Sperrle, Fabian</dc:contributor> <dcterms:title>Visual Analytics for Topic Model Optimization based on User-Steerable Speculative Execution</dcterms:title> <dcterms:abstract xml:lang="eng">To effectively assess the potential consequences of human interventions in model-driven analytics systems, we establish the concept of speculative execution as a visual analytics paradigm for creating user-steerable preview mechanisms. This paper presents an explainable, mixed-initiative topic modeling framework that integrates speculative execution into the algorithmic decisionmaking process. Our approach visualizes the model-space of our novel incremental hierarchical topic modeling algorithm, unveiling its inner-workings. We support the active incorporation of the user's domain knowledge in every step through explicit model manipulation interactions. In addition, users can initialize the model with expected topic seeds, the backbone priors. For a more targeted optimization, the modeling process automatically triggers a speculative execution of various optimization strategies, and requests feedback whenever the measured model quality deteriorates. Users compare the proposed optimizations to the current model state and preview their effect on the next model iterations, before applying one of them. This supervised human-in-the-loop process targets maximum improvement for minimum feedback and has proven to be effective in three independent studies that confirm topic model quality improvements.</dcterms:abstract> </rdf:Description> </rdf:RDF>