Publikation: Meshless Methods for Conservation Laws
Lade...
Dateien
Zu diesem Dokument gibt es keine Dateien.
Datum
2005
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Beitrag zu einem Sammelband
Publikationsstatus
Published
Erschienen in
WARNECKE, Gerald, ed.. Analysis and Numerics for Conservation Laws. Springer Berlin Heidelberg, 2005, pp. 339-362. ISBN 978-3-540-24834-7. Available under: doi: 10.1007/3-540-27907-5_15
Zusammenfassung
In this article, two meshfree methods for the numerical solution of conservation laws are considered. The Finite Volume Particle Method (FVPM) generalizes the Finite Volume approach and the Finite Pointset Method (FPM) is a Finite Difference scheme which can work on unstructured and moving point clouds. Details of the derivation and numerical examples are presented for the case of incompressible, viscous, two-phase flow. In the case of FVPM, our main focus lies on the derivation of stability estimates.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
510 Mathematik
Schlagwörter
Konferenz
Rezension
undefined / . - undefined, undefined
Zitieren
ISO 690
HIETEL, Dietmar, Michael JUNK, Jörg KUHNERT, Sudarshan TIWARI, 2005. Meshless Methods for Conservation Laws. In: WARNECKE, Gerald, ed.. Analysis and Numerics for Conservation Laws. Springer Berlin Heidelberg, 2005, pp. 339-362. ISBN 978-3-540-24834-7. Available under: doi: 10.1007/3-540-27907-5_15BibTex
@incollection{Hietel2005Meshl-25402, year={2005}, doi={10.1007/3-540-27907-5_15}, title={Meshless Methods for Conservation Laws}, isbn={978-3-540-24834-7}, publisher={Springer Berlin Heidelberg}, booktitle={Analysis and Numerics for Conservation Laws}, pages={339--362}, editor={Warnecke, Gerald}, author={Hietel, Dietmar and Junk, Michael and Kuhnert, Jörg and Tiwari, Sudarshan} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/25402"> <dcterms:issued>2005</dcterms:issued> <dc:creator>Junk, Michael</dc:creator> <dc:contributor>Junk, Michael</dc:contributor> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dcterms:bibliographicCitation>Analysis and Numerics for Conservation Laws : with 18 tables / Gerald Warnecke (ed.). - Berlin [u.a.] : Springer, 2005. - S. 339-362. - ISBN 978-3-540-24834-7</dcterms:bibliographicCitation> <dc:contributor>Hietel, Dietmar</dc:contributor> <dc:language>eng</dc:language> <dc:creator>Hietel, Dietmar</dc:creator> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2013-12-11T10:46:42Z</dc:date> <dc:creator>Kuhnert, Jörg</dc:creator> <dc:creator>Tiwari, Sudarshan</dc:creator> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:rights>terms-of-use</dc:rights> <dc:contributor>Tiwari, Sudarshan</dc:contributor> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/25402"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2013-12-11T10:46:42Z</dcterms:available> <dcterms:abstract xml:lang="eng">In this article, two meshfree methods for the numerical solution of conservation laws are considered. The Finite Volume Particle Method (FVPM) generalizes the Finite Volume approach and the Finite Pointset Method (FPM) is a Finite Difference scheme which can work on unstructured and moving point clouds. Details of the derivation and numerical examples are presented for the case of incompressible, viscous, two-phase flow. In the case of FVPM, our main focus lies on the derivation of stability estimates.</dcterms:abstract> <dc:contributor>Kuhnert, Jörg</dc:contributor> <dcterms:title>Meshless Methods for Conservation Laws</dcterms:title> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> </rdf:Description> </rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja