Publikation: Photoperiodic adaptation of aanat and clock gene expression in seasonal populations of Daphnia pulex
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
Changes in day-length entrain the endogenous clock of organisms leading to complex responses to photoperiod. In long-lived organisms experiencing several seasons this response of the clock to photoperiod is phenotypically plastic. However, short-lived organisms often experience a single season without pronounced changes in day-length. For those, a plastic response of the clock to different seasons would not necessarily be adaptive. In aquatic ecosystems, zooplankton species like Daphnia live only for some weeks, i.e. one week up to ca. two months. However, they often show a succession of clones that are seasonally adapted to environmental changes. Here, we found that 16 Daphnia clones per each of three seasons ( = 48 clones) from the same pond and year differed in clock gene expression with a homogenous gene expression pattern in ephippia-hatched spring clones and a bimodal expression pattern in summer and autumn populations indicating an ongoing adaptation process. We clearly demonstrate that spring clones were adapted to a short, and summer clones to a long photoperiod. Furthermore, we found that gene expression of the melatonin-synthesis enzyme AANAT was always lowest in summer clones. In the Anthropocene, Daphnia’s clock might be disturbed by light-pollution and global warming. Since Daphnia is a key-organism in trophic carbon transfer, a disruption of its clock rhythm would be devastating for the stability of freshwater ecosystems. Our results are an important step in understanding the adaptation of Daphnia’s clock to environmental changes.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
SCHWARZENBERGER, Anke, Patrick BARTOLIN, Alexander WACKER, 2023. Photoperiodic adaptation of aanat and clock gene expression in seasonal populations of Daphnia pulex. In: Chronobiology International. Taylor & Francis. 2023, 40(5), pp. 635-643. ISSN 0742-0528. eISSN 1525-6073. Available under: doi: 10.1080/07420528.2023.2195942BibTex
@article{Schwarzenberger2023Photo-66753, year={2023}, doi={10.1080/07420528.2023.2195942}, title={Photoperiodic adaptation of <i>aanat</i> and clock gene expression in seasonal populations of <i>Daphnia pulex</i>}, number={5}, volume={40}, issn={0742-0528}, journal={Chronobiology International}, pages={635--643}, author={Schwarzenberger, Anke and Bartolin, Patrick and Wacker, Alexander} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/66753"> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2023-04-26T06:49:40Z</dcterms:available> <dc:contributor>Schwarzenberger, Anke</dc:contributor> <dc:creator>Bartolin, Patrick</dc:creator> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/> <dc:contributor>Wacker, Alexander</dc:contributor> <dc:language>eng</dc:language> <dc:creator>Schwarzenberger, Anke</dc:creator> <dcterms:issued>2023</dcterms:issued> <dc:creator>Wacker, Alexander</dc:creator> <dc:contributor>Bartolin, Patrick</dc:contributor> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2023-04-26T06:49:40Z</dc:date> <dcterms:abstract>Changes in day-length entrain the endogenous clock of organisms leading to complex responses to photoperiod. In long-lived organisms experiencing several seasons this response of the clock to photoperiod is phenotypically plastic. However, short-lived organisms often experience a single season without pronounced changes in day-length. For those, a plastic response of the clock to different seasons would not necessarily be adaptive. In aquatic ecosystems, zooplankton species like Daphnia live only for some weeks, i.e. one week up to ca. two months. However, they often show a succession of clones that are seasonally adapted to environmental changes. Here, we found that 16 Daphnia clones per each of three seasons ( = 48 clones) from the same pond and year differed in clock gene expression with a homogenous gene expression pattern in ephippia-hatched spring clones and a bimodal expression pattern in summer and autumn populations indicating an ongoing adaptation process. We clearly demonstrate that spring clones were adapted to a short, and summer clones to a long photoperiod. Furthermore, we found that gene expression of the melatonin-synthesis enzyme AANAT was always lowest in summer clones. In the Anthropocene, Daphnia’s clock might be disturbed by light-pollution and global warming. Since Daphnia is a key-organism in trophic carbon transfer, a disruption of its clock rhythm would be devastating for the stability of freshwater ecosystems. Our results are an important step in understanding the adaptation of Daphnia’s clock to environmental changes.</dcterms:abstract> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/66753"/> <dcterms:title>Photoperiodic adaptation of <i>aanat</i> and clock gene expression in seasonal populations of <i>Daphnia pulex</i></dcterms:title> <foaf:homepage rdf:resource="http://localhost:8080/"/> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> </rdf:Description> </rdf:RDF>