Publikation: Realtime Quality Assessment of Iris Biometrics under Visible Light
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
Ensuring sufficient quality of iris images acquired by handheld imaging devices in visible light poses many challenges to iris recognition systems. Many distortions affect the input iris images, and the source and types of these distortions are unknown in uncontrolled environments. We propose a fast no-reference image quality assessment measure for predicting iris image quality to handle severely degraded iris images. The proposed differential sign-magnitude statistics index (DSMI) is based on statistical features of the local difference sign-magnitude transform, which are computed by comparing the local mean with the central pixel of the patch and considering the noticeable variations. The experiments, conducted with a reference iris recognition system and three visible light datasets, showed that the quality of iris images strongly affects the recognition performance. Using the proposed method as a quality filtering step improved the performance of the iris recognition system by rejecting poor quality iris samples.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
JENADELEH, Mohsen, Marius PEDERSEN, Dietmar SAUPE, 2018. Realtime Quality Assessment of Iris Biometrics under Visible Light. CVPR 2018 : IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City, Utah, USA, 18. Juni 2018 - 22. Juni 2018. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshops. Computer Vision Foundation, 2018, pp. 556-565. Available under: doi: 10.1109/CVPRW.2018.00085BibTex
@inproceedings{Jenadeleh2018Realt-42587,
year={2018},
doi={10.1109/CVPRW.2018.00085},
title={Realtime Quality Assessment of Iris Biometrics under Visible Light},
url={http://openaccess.thecvf.com/content_CVPR_2018/papers/w11/Jenadeleh_Realtime_Quality_Assessment_CVPR_2018_paper.pdf},
publisher={Computer Vision Foundation},
booktitle={The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshops},
pages={556--565},
author={Jenadeleh, Mohsen and Pedersen, Marius and Saupe, Dietmar}
}RDF
<rdf:RDF
xmlns:dcterms="http://purl.org/dc/terms/"
xmlns:dc="http://purl.org/dc/elements/1.1/"
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:bibo="http://purl.org/ontology/bibo/"
xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
xmlns:foaf="http://xmlns.com/foaf/0.1/"
xmlns:void="http://rdfs.org/ns/void#"
xmlns:xsd="http://www.w3.org/2001/XMLSchema#" >
<rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/42587">
<dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
<foaf:homepage rdf:resource="http://localhost:8080/"/>
<dc:creator>Saupe, Dietmar</dc:creator>
<dc:contributor>Jenadeleh, Mohsen</dc:contributor>
<dc:language>eng</dc:language>
<dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/42587/3/Jenadeleh_2-1db8odgkzm0gn5.pdf"/>
<dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2018-06-14T12:59:46Z</dcterms:available>
<dc:creator>Pedersen, Marius</dc:creator>
<void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
<bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/42587"/>
<dc:rights>terms-of-use</dc:rights>
<dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
<dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2018-06-14T12:59:46Z</dc:date>
<dc:contributor>Pedersen, Marius</dc:contributor>
<dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
<dcterms:title>Realtime Quality Assessment of Iris Biometrics under Visible Light</dcterms:title>
<dc:contributor>Saupe, Dietmar</dc:contributor>
<dcterms:abstract xml:lang="eng">Ensuring sufficient quality of iris images acquired by handheld imaging devices in visible light poses many challenges to iris recognition systems. Many distortions affect the input iris images, and the source and types of these distortions are unknown in uncontrolled environments. We propose a fast no-reference image quality assessment measure for predicting iris image quality to handle severely degraded iris images. The proposed differential sign-magnitude statistics index (DSMI) is based on statistical features of the local difference sign-magnitude transform, which are computed by comparing the local mean with the central pixel of the patch and considering the noticeable variations. The experiments, conducted with a reference iris recognition system and three visible light datasets, showed that the quality of iris images strongly affects the recognition performance. Using the proposed method as a quality filtering step improved the performance of the iris recognition system by rejecting poor quality iris samples.</dcterms:abstract>
<dc:creator>Jenadeleh, Mohsen</dc:creator>
<dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/42587/3/Jenadeleh_2-1db8odgkzm0gn5.pdf"/>
<dcterms:issued>2018</dcterms:issued>
</rdf:Description>
</rdf:RDF>