Publikation:

Determinantal representations of hyperbolic curves via polynomial homotopy continuation

Lade...
Vorschaubild

Dateien

Zu diesem Dokument gibt es keine Dateien.

Datum

2017

Autor:innen

Leykin, Anton

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

URI (zitierfähiger Link)
DOI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

Mathematics of Computation. 2017, 86(308), pp. 2877-2888. ISSN 0025-5718. eISSN 1088-6842. Available under: doi: 10.1090/mcom/3194

Zusammenfassung

A smooth curve of degree $ d$ in the real projective plane is hyperbolic if its ovals are maximally nested, i.e., its real points contain $ \lfloor \frac d2\rfloor $ nested ovals. By the Helton-Vinnikov theorem, any such curve admits a definite symmetric determinantal representation. We use polynomial homotopy continuation to compute such representations numerically. Our method works by lifting paths from the space of hyperbolic polynomials to a branched cover in the space of pairs of symmetric matrices.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
510 Mathematik

Schlagwörter

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690LEYKIN, Anton, Daniel PLAUMANN, 2017. Determinantal representations of hyperbolic curves via polynomial homotopy continuation. In: Mathematics of Computation. 2017, 86(308), pp. 2877-2888. ISSN 0025-5718. eISSN 1088-6842. Available under: doi: 10.1090/mcom/3194
BibTex
@article{Leykin2017Deter-39627,
  year={2017},
  doi={10.1090/mcom/3194},
  title={Determinantal representations of hyperbolic curves via polynomial homotopy continuation},
  number={308},
  volume={86},
  issn={0025-5718},
  journal={Mathematics of Computation},
  pages={2877--2888},
  author={Leykin, Anton and Plaumann, Daniel}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39627">
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2017-07-19T09:31:06Z</dc:date>
    <dcterms:issued>2017</dcterms:issued>
    <dcterms:title>Determinantal representations of hyperbolic curves via polynomial homotopy continuation</dcterms:title>
    <dc:language>eng</dc:language>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2017-07-19T09:31:06Z</dcterms:available>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dc:contributor>Plaumann, Daniel</dc:contributor>
    <dc:contributor>Leykin, Anton</dc:contributor>
    <dc:creator>Leykin, Anton</dc:creator>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/39627"/>
    <dc:creator>Plaumann, Daniel</dc:creator>
    <dcterms:abstract xml:lang="eng">A smooth curve of degree $ d$ in the real projective plane is hyperbolic if its ovals are maximally nested, i.e., its real points contain $ \lfloor \frac d2\rfloor $ nested ovals. By the Helton-Vinnikov theorem, any such curve admits a definite symmetric determinantal representation. We use polynomial homotopy continuation to compute such representations numerically. Our method works by lifting paths from the space of hyperbolic polynomials to a branched cover in the space of pairs of symmetric matrices.</dcterms:abstract>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Nein
Begutachtet
Diese Publikation teilen