Publikation: Determinantal representations of hyperbolic curves via polynomial homotopy continuation
Lade...
Dateien
Zu diesem Dokument gibt es keine Dateien.
Datum
2017
Autor:innen
Leykin, Anton
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published
Erschienen in
Mathematics of Computation. 2017, 86(308), pp. 2877-2888. ISSN 0025-5718. eISSN 1088-6842. Available under: doi: 10.1090/mcom/3194
Zusammenfassung
A smooth curve of degree $ d$ in the real projective plane is hyperbolic if its ovals are maximally nested, i.e., its real points contain $ \lfloor \frac d2\rfloor $ nested ovals. By the Helton-Vinnikov theorem, any such curve admits a definite symmetric determinantal representation. We use polynomial homotopy continuation to compute such representations numerically. Our method works by lifting paths from the space of hyperbolic polynomials to a branched cover in the space of pairs of symmetric matrices.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
510 Mathematik
Schlagwörter
Konferenz
Rezension
undefined / . - undefined, undefined
Zitieren
ISO 690
LEYKIN, Anton, Daniel PLAUMANN, 2017. Determinantal representations of hyperbolic curves via polynomial homotopy continuation. In: Mathematics of Computation. 2017, 86(308), pp. 2877-2888. ISSN 0025-5718. eISSN 1088-6842. Available under: doi: 10.1090/mcom/3194BibTex
@article{Leykin2017Deter-39627, year={2017}, doi={10.1090/mcom/3194}, title={Determinantal representations of hyperbolic curves via polynomial homotopy continuation}, number={308}, volume={86}, issn={0025-5718}, journal={Mathematics of Computation}, pages={2877--2888}, author={Leykin, Anton and Plaumann, Daniel} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39627"> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2017-07-19T09:31:06Z</dc:date> <dcterms:issued>2017</dcterms:issued> <dcterms:title>Determinantal representations of hyperbolic curves via polynomial homotopy continuation</dcterms:title> <dc:language>eng</dc:language> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2017-07-19T09:31:06Z</dcterms:available> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dc:contributor>Plaumann, Daniel</dc:contributor> <dc:contributor>Leykin, Anton</dc:contributor> <dc:creator>Leykin, Anton</dc:creator> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/39627"/> <dc:creator>Plaumann, Daniel</dc:creator> <dcterms:abstract xml:lang="eng">A smooth curve of degree $ d$ in the real projective plane is hyperbolic if its ovals are maximally nested, i.e., its real points contain $ \lfloor \frac d2\rfloor $ nested ovals. By the Helton-Vinnikov theorem, any such curve admits a definite symmetric determinantal representation. We use polynomial homotopy continuation to compute such representations numerically. Our method works by lifting paths from the space of hyperbolic polynomials to a branched cover in the space of pairs of symmetric matrices.</dcterms:abstract> </rdf:Description> </rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Nein