Publikation: A posteriori error estimation for semilinear parabolic optimal control problems with application to model reduction by POD
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
We consider the following problem of error estimation for the optimal control of nonlinear parabolic partial differential equations: let an arbitrary admissible control function be given. How far is it from the next locally optimal control? Under natural assumptions including a second-order sufficient optimality condition for the (unknown) locally optimal control, we estimate the distance between the two controls. To do this, we need some information on the lowest eigenvalue of the reduced Hessian. We apply this technique to a model reduced optimal control problem obtained by proper orthogonal decomposition (POD). The distance between a local solution of the reduced problem to a local solution of the original problem is estimated.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
KAMMANN, Eileen, Fredi TRÖLTZSCH, Stefan VOLKWEIN, 2013. A posteriori error estimation for semilinear parabolic optimal control problems with application to model reduction by POD. In: ESAIM: Mathematical Modelling and Numerical Analysis. 2013, 47(2), pp. 555-581. ISSN 0764-583X. eISSN 1290-3841. Available under: doi: 10.1051/m2an/2012037BibTex
@article{Kammann2013poste-26450, year={2013}, doi={10.1051/m2an/2012037}, title={A posteriori error estimation for semilinear parabolic optimal control problems with application to model reduction by POD}, number={2}, volume={47}, issn={0764-583X}, journal={ESAIM: Mathematical Modelling and Numerical Analysis}, pages={555--581}, author={Kammann, Eileen and Tröltzsch, Fredi and Volkwein, Stefan} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/26450"> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dcterms:issued>2013</dcterms:issued> <dc:creator>Tröltzsch, Fredi</dc:creator> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/26450"/> <dc:creator>Volkwein, Stefan</dc:creator> <dcterms:abstract xml:lang="eng">We consider the following problem of error estimation for the optimal control of nonlinear parabolic partial differential equations: let an arbitrary admissible control function be given. How far is it from the next locally optimal control? Under natural assumptions including a second-order sufficient optimality condition for the (unknown) locally optimal control, we estimate the distance between the two controls. To do this, we need some information on the lowest eigenvalue of the reduced Hessian. We apply this technique to a model reduced optimal control problem obtained by proper orthogonal decomposition (POD). The distance between a local solution of the reduced problem to a local solution of the original problem is estimated.</dcterms:abstract> <dc:contributor>Kammann, Eileen</dc:contributor> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dc:language>eng</dc:language> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2014-02-19T12:49:44Z</dc:date> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dcterms:bibliographicCitation>Mathematical modelling and numerical analysis ; 47 (2013), 2. - S. 555-581</dcterms:bibliographicCitation> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2014-02-19T12:49:44Z</dcterms:available> <dc:rights>terms-of-use</dc:rights> <dcterms:title>A posteriori error estimation for semilinear parabolic optimal control problems with application to model reduction by POD</dcterms:title> <dc:contributor>Volkwein, Stefan</dc:contributor> <dc:contributor>Tröltzsch, Fredi</dc:contributor> <dc:creator>Kammann, Eileen</dc:creator> </rdf:Description> </rdf:RDF>