Publikation: Mixed-Initiative Active Learning for Generating Linguistic Insights in Question Classification
Dateien
Datum
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
We propose a mixed-initiative active learning system to tackle the challenge of building descriptive models for under-studied linguistic phenomena. Our particular use case is the linguistic analysis of question types, in particular in understanding what characterizes information-seeking vs. non-information-seeking questions (i.e., whether the speaker wants to elicit an answer from the hearer or not) and how automated methods can assist with the linguistic analysis. Our approach is motivated by the need for an effective and efficient human-in-the-loop process in natural language processing that relies on example-based learning and provides immediate feedback to the user. In addition to the concrete implementation of a question classification system, we describe general paradigms of explainable mixed-initiative learning, allowing for the user to access the patterns identified automatically by the system, rather than being confronted by a machine learning black box. Our user study demonstrates the capability of our system in providing deep linguistic insight into this particular analysis problem. The results of our evaluation are competitive with the current state-of-the-art.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
SEVASTJANOVA, Rita, Mennatallah EL-ASSADY, Annette HAUTLI-JANISZ, Aikaterini-Lida KALOULI, Rebecca KEHLBECK, Oliver DEUSSEN, Daniel A. KEIM, Miriam BUTT, 2018. Mixed-Initiative Active Learning for Generating Linguistic Insights in Question Classification. 3rd Workshop on Data Systems for Interactive Analysis (DSIA) at IEEE VIS. Berlin, 21. Okt. 2018. In: 3rd Workshop on Data Systems for Interactive Analysis (DSIA) at IEEE VIS. 2018BibTex
@inproceedings{Sevastjanova2018Mixed-45041, year={2018}, title={Mixed-Initiative Active Learning for Generating Linguistic Insights in Question Classification}, url={https://scibib.dbvis.de/uploadedFiles/MixedInitiativeActiveLearning.pdf}, booktitle={3rd Workshop on Data Systems for Interactive Analysis (DSIA) at IEEE VIS}, author={Sevastjanova, Rita and El-Assady, Mennatallah and Hautli-Janisz, Annette and Kalouli, Aikaterini-Lida and Kehlbeck, Rebecca and Deussen, Oliver and Keim, Daniel A. and Butt, Miriam} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/45041"> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:creator>Kalouli, Aikaterini-Lida</dc:creator> <dc:contributor>Hautli-Janisz, Annette</dc:contributor> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:rights>terms-of-use</dc:rights> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/45"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2019-02-14T13:42:40Z</dc:date> <dc:creator>Hautli-Janisz, Annette</dc:creator> <dc:contributor>Butt, Miriam</dc:contributor> <dc:creator>Sevastjanova, Rita</dc:creator> <dc:contributor>Kehlbeck, Rebecca</dc:contributor> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:creator>Butt, Miriam</dc:creator> <dc:creator>El-Assady, Mennatallah</dc:creator> <dc:contributor>Kalouli, Aikaterini-Lida</dc:contributor> <dc:contributor>Sevastjanova, Rita</dc:contributor> <dc:contributor>Deussen, Oliver</dc:contributor> <dc:creator>Deussen, Oliver</dc:creator> <dc:creator>Kehlbeck, Rebecca</dc:creator> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/45041/1/Sevastjanova_2-1fqa14995ftkg1.pdf"/> <dc:contributor>El-Assady, Mennatallah</dc:contributor> <dc:language>eng</dc:language> <dc:contributor>Keim, Daniel A.</dc:contributor> <dcterms:title>Mixed-Initiative Active Learning for Generating Linguistic Insights in Question Classification</dcterms:title> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/45"/> <dc:creator>Keim, Daniel A.</dc:creator> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2019-02-14T13:42:40Z</dcterms:available> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/45041/1/Sevastjanova_2-1fqa14995ftkg1.pdf"/> <dcterms:issued>2018</dcterms:issued> <dcterms:abstract xml:lang="eng">We propose a mixed-initiative active learning system to tackle the challenge of building descriptive models for under-studied linguistic phenomena. Our particular use case is the linguistic analysis of question types, in particular in understanding what characterizes information-seeking vs. non-information-seeking questions (i.e., whether the speaker wants to elicit an answer from the hearer or not) and how automated methods can assist with the linguistic analysis. Our approach is motivated by the need for an effective and efficient human-in-the-loop process in natural language processing that relies on example-based learning and provides immediate feedback to the user. In addition to the concrete implementation of a question classification system, we describe general paradigms of explainable mixed-initiative learning, allowing for the user to access the patterns identified automatically by the system, rather than being confronted by a machine learning black box. Our user study demonstrates the capability of our system in providing deep linguistic insight into this particular analysis problem. The results of our evaluation are competitive with the current state-of-the-art.</dcterms:abstract> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/45041"/> </rdf:Description> </rdf:RDF>