Publikation:

Mixed-Initiative Active Learning for Generating Linguistic Insights in Question Classification

Lade...
Vorschaubild

Dateien

Sevastjanova_2-1fqa14995ftkg1.pdf
Sevastjanova_2-1fqa14995ftkg1.pdfGröße: 830.05 KBDownloads: 340

Datum

2018

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

DOI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Green
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Beitrag zu einem Konferenzband
Publikationsstatus
Published

Erschienen in

3rd Workshop on Data Systems for Interactive Analysis (DSIA) at IEEE VIS. 2018

Zusammenfassung

We propose a mixed-initiative active learning system to tackle the challenge of building descriptive models for under-studied linguistic phenomena. Our particular use case is the linguistic analysis of question types, in particular in understanding what characterizes information-seeking vs. non-information-seeking questions (i.e., whether the speaker wants to elicit an answer from the hearer or not) and how automated methods can assist with the linguistic analysis. Our approach is motivated by the need for an effective and efficient human-in-the-loop process in natural language processing that relies on example-based learning and provides immediate feedback to the user. In addition to the concrete implementation of a question classification system, we describe general paradigms of explainable mixed-initiative learning, allowing for the user to access the patterns identified automatically by the system, rather than being confronted by a machine learning black box. Our user study demonstrates the capability of our system in providing deep linguistic insight into this particular analysis problem. The results of our evaluation are competitive with the current state-of-the-art.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
004 Informatik

Schlagwörter

Konferenz

3rd Workshop on Data Systems for Interactive Analysis (DSIA) at IEEE VIS, 21. Okt. 2018, Berlin
Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690SEVASTJANOVA, Rita, Mennatallah EL-ASSADY, Annette HAUTLI-JANISZ, Aikaterini-Lida KALOULI, Rebecca KEHLBECK, Oliver DEUSSEN, Daniel A. KEIM, Miriam BUTT, 2018. Mixed-Initiative Active Learning for Generating Linguistic Insights in Question Classification. 3rd Workshop on Data Systems for Interactive Analysis (DSIA) at IEEE VIS. Berlin, 21. Okt. 2018. In: 3rd Workshop on Data Systems for Interactive Analysis (DSIA) at IEEE VIS. 2018
BibTex
@inproceedings{Sevastjanova2018Mixed-45041,
  year={2018},
  title={Mixed-Initiative Active Learning for Generating Linguistic Insights in Question Classification},
  url={https://scibib.dbvis.de/uploadedFiles/MixedInitiativeActiveLearning.pdf},
  booktitle={3rd Workshop on Data Systems for Interactive Analysis (DSIA) at IEEE VIS},
  author={Sevastjanova, Rita and El-Assady, Mennatallah and Hautli-Janisz, Annette and Kalouli, Aikaterini-Lida and Kehlbeck, Rebecca and Deussen, Oliver and Keim, Daniel A. and Butt, Miriam}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/45041">
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:creator>Kalouli, Aikaterini-Lida</dc:creator>
    <dc:contributor>Hautli-Janisz, Annette</dc:contributor>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:rights>terms-of-use</dc:rights>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/45"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2019-02-14T13:42:40Z</dc:date>
    <dc:creator>Hautli-Janisz, Annette</dc:creator>
    <dc:contributor>Butt, Miriam</dc:contributor>
    <dc:creator>Sevastjanova, Rita</dc:creator>
    <dc:contributor>Kehlbeck, Rebecca</dc:contributor>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:creator>Butt, Miriam</dc:creator>
    <dc:creator>El-Assady, Mennatallah</dc:creator>
    <dc:contributor>Kalouli, Aikaterini-Lida</dc:contributor>
    <dc:contributor>Sevastjanova, Rita</dc:contributor>
    <dc:contributor>Deussen, Oliver</dc:contributor>
    <dc:creator>Deussen, Oliver</dc:creator>
    <dc:creator>Kehlbeck, Rebecca</dc:creator>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/45041/1/Sevastjanova_2-1fqa14995ftkg1.pdf"/>
    <dc:contributor>El-Assady, Mennatallah</dc:contributor>
    <dc:language>eng</dc:language>
    <dc:contributor>Keim, Daniel A.</dc:contributor>
    <dcterms:title>Mixed-Initiative Active Learning for Generating Linguistic Insights in Question Classification</dcterms:title>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/45"/>
    <dc:creator>Keim, Daniel A.</dc:creator>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2019-02-14T13:42:40Z</dcterms:available>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/45041/1/Sevastjanova_2-1fqa14995ftkg1.pdf"/>
    <dcterms:issued>2018</dcterms:issued>
    <dcterms:abstract xml:lang="eng">We propose a mixed-initiative active learning system to tackle the challenge of building descriptive models for under-studied linguistic phenomena. Our particular use case is the linguistic analysis of question types, in particular in understanding what characterizes information-seeking vs. non-information-seeking questions (i.e., whether the speaker wants to elicit an answer from the hearer or not) and how automated methods can assist with the linguistic analysis. Our approach is motivated by the need for an effective and efficient human-in-the-loop process in natural language processing that relies on example-based learning and provides immediate feedback to the user. In addition to the concrete implementation of a question classification system, we describe general paradigms of explainable mixed-initiative learning, allowing for the user to access the patterns identified automatically by the system, rather than being confronted by a machine learning black box. Our user study demonstrates the capability of our system in providing deep linguistic insight into this particular analysis problem. The results of our evaluation are competitive with the current state-of-the-art.</dcterms:abstract>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/45041"/>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt

Prüfdatum der URL

2019-02-14

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen