Publikation: Closure of the cone of sums of 2d-powers in real topological algebras
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
Let R be a unitary commutative R-algebra and K⊆X(R)=Hom(R,R), closed with respect to the product topology. We consider R endowed with the topology T(K), induced by the family of seminorms ρα(a):=|α(a)|, for α∈K and a∈R. In case K is compact, we also consider the topology induced by ‖a‖K:=supα∈K|α(a)| for a∈R. If K is Zariski dense, then those topologies are Hausdorff. In this paper we prove that the closure of the cone of sums of 2d-powers, ∑R2d, with respect to those two topologies is equal to Psd(K):={a∈R:α(a)⩾0, for all α∈K}. In particular, any continuous linear functional L on the polynomial ring View the MathML source with L(h2d)⩾0 for each View the MathML source is integration with respect to a positive Borel measure supported on K. Finally we give necessary and sufficient conditions to ensure the continuity of a linear functional with respect to those two topologies.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
GHASEMI, Mehdi, Salma KUHLMANN, 2013. Closure of the cone of sums of 2d-powers in real topological algebras. In: Journal of Functional Analysis. 2013, 264(1), pp. 413-427. ISSN 0022-1236. eISSN 1096-0783. Available under: doi: 10.1016/j.jfa.2012.10.018BibTex
@article{Ghasemi2013Closu-21247, year={2013}, doi={10.1016/j.jfa.2012.10.018}, title={Closure of the cone of sums of 2d-powers in real topological algebras}, number={1}, volume={264}, issn={0022-1236}, journal={Journal of Functional Analysis}, pages={413--427}, author={Ghasemi, Mehdi and Kuhlmann, Salma} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/21247"> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/21247"/> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dc:language>eng</dc:language> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:rights>terms-of-use</dc:rights> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dcterms:title>Closure of the cone of sums of 2d-powers in real topological algebras</dcterms:title> <dc:contributor>Kuhlmann, Salma</dc:contributor> <dc:creator>Kuhlmann, Salma</dc:creator> <dcterms:bibliographicCitation>Journal of Functional Analysis ; 264 (2013), 1. - S. 413-427</dcterms:bibliographicCitation> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2013-01-25T10:40:54Z</dc:date> <dcterms:issued>2013</dcterms:issued> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2013-01-25T10:40:54Z</dcterms:available> <dc:creator>Ghasemi, Mehdi</dc:creator> <dcterms:abstract xml:lang="eng">Let R be a unitary commutative R-algebra and K⊆X(R)=Hom(R,R), closed with respect to the product topology. We consider R endowed with the topology T(K), induced by the family of seminorms ρα(a):=|α(a)|, for α∈K and a∈R. In case K is compact, we also consider the topology induced by ‖a‖K:=supα∈K|α(a)| for a∈R. If K is Zariski dense, then those topologies are Hausdorff. In this paper we prove that the closure of the cone of sums of 2d-powers, ∑R2d, with respect to those two topologies is equal to Psd(K):={a∈R:α(a)⩾0, for all α∈K}. In particular, any continuous linear functional L on the polynomial ring View the MathML source with L(h2d)⩾0 for each View the MathML source is integration with respect to a positive Borel measure supported on K. Finally we give necessary and sufficient conditions to ensure the continuity of a linear functional with respect to those two topologies.</dcterms:abstract> <dc:contributor>Ghasemi, Mehdi</dc:contributor> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> </rdf:Description> </rdf:RDF>