Publikation: Enhancing media literacy : The effectiveness of (Human) annotations and bias visualizations on bias detection
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
Marking biased texts effectively increases media bias awareness, but its sustainability across new topics and unmarked news remains unclear, and the role of AI-generated bias labels is untested. This study examines how news consumers learn to perceive media bias from human- and AI-generated labels and identify biased language through highlighting, neutral rephrasing, and political orientation cues. We conducted two experiments with a teaching phase exposing them to various bias-labeling conditions and a testing phase evaluating their ability to classify biased sentences and detect biased text in unlabeled news on new topics.
We find that, compared to the control group, both human- and AI-generated sentential bias labels significantly improve bias classification (p < .001), though human labels are more effective (d = 0.42 vs. d = 0.23). Additionally, among all teaching interventions, participants best detect biased sentences when taught with biased sentence or phrase labels (p < .001), while politicized phrase labels reduce accuracy. The effectiveness of different media literacy interventions remains independent of political ideology, but conservative participants are generally less accurate (p = .011), suggesting an interaction between political inclinations and bias detection.
Our research provides a novel experimental framework into assessing the generalizability of media bias awareness and offer practical implications for designing bias indicators in news-reading platforms and media literacy curricula.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
SPINDE, Timo, Fei WU, Wolfgang GAISSMAIER, Gianluca DEMARTINI, Isao ECHIZEN, Helge GIESE, 2025. Enhancing media literacy : The effectiveness of (Human) annotations and bias visualizations on bias detection. In: Information Processing & Management. Elsevier. 2025, 62(6), 104244. ISSN 0306-4573. eISSN 1873-5371. Verfügbar unter: doi: 10.1016/j.ipm.2025.104244BibTex
@article{Spinde2025-11Enhan-73690, title={Enhancing media literacy : The effectiveness of (Human) annotations and bias visualizations on bias detection}, year={2025}, doi={10.1016/j.ipm.2025.104244}, number={6}, volume={62}, issn={0306-4573}, journal={Information Processing & Management}, author={Spinde, Timo and Wu, Fei and Gaissmaier, Wolfgang and Demartini, Gianluca and Echizen, Isao and Giese, Helge}, note={Article Number: 104244} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/73690"> <dc:contributor>Gaissmaier, Wolfgang</dc:contributor> <dc:contributor>Wu, Fei</dc:contributor> <dcterms:issued>2025-11</dcterms:issued> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/73690"/> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/43"/> <dc:creator>Gaissmaier, Wolfgang</dc:creator> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/43615"/> <dc:contributor>Giese, Helge</dc:contributor> <dc:contributor>Demartini, Gianluca</dc:contributor> <dc:creator>Demartini, Gianluca</dc:creator> <dc:creator>Giese, Helge</dc:creator> <dc:contributor>Spinde, Timo</dc:contributor> <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by/4.0/"/> <dcterms:title>Enhancing media literacy : The effectiveness of (Human) annotations and bias visualizations on bias detection</dcterms:title> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/43"/> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/43615"/> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/73690/1/Spinde_2-1g08fi9vfwuj45.pdf"/> <dc:rights>Attribution 4.0 International</dc:rights> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2025-06-25T05:49:20Z</dc:date> <dc:creator>Spinde, Timo</dc:creator> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/73690/1/Spinde_2-1g08fi9vfwuj45.pdf"/> <dc:creator>Echizen, Isao</dc:creator> <dc:language>eng</dc:language> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:contributor>Echizen, Isao</dc:contributor> <dcterms:abstract>Marking biased texts effectively increases media bias awareness, but its sustainability across new topics and unmarked news remains unclear, and the role of AI-generated bias labels is untested. This study examines how news consumers learn to perceive media bias from human- and AI-generated labels and identify biased language through highlighting, neutral rephrasing, and political orientation cues. We conducted two experiments with a teaching phase exposing them to various bias-labeling conditions and a testing phase evaluating their ability to classify biased sentences and detect biased text in unlabeled news on new topics. We find that, compared to the control group, both human- and AI-generated sentential bias labels significantly improve bias classification (p < .001), though human labels are more effective (d = 0.42 vs. d = 0.23). Additionally, among all teaching interventions, participants best detect biased sentences when taught with biased sentence or phrase labels (p < .001), while politicized phrase labels reduce accuracy. The effectiveness of different media literacy interventions remains independent of political ideology, but conservative participants are generally less accurate (p = .011), suggesting an interaction between political inclinations and bias detection. Our research provides a novel experimental framework into assessing the generalizability of media bias awareness and offer practical implications for designing bias indicators in news-reading platforms and media literacy curricula.</dcterms:abstract> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2025-06-25T05:49:20Z</dcterms:available> <dc:creator>Wu, Fei</dc:creator> </rdf:Description> </rdf:RDF>