Protein adsorption on ZnO films studied by ATR-FTIR spectroscopy

Loading...
Thumbnail Image
Date
2020
Editors
Contact
Journal ISSN
Electronic ISSN
ISBN
Bibliographical data
Publisher
Series
DOI (citable link)
ArXiv-ID
International patent number
Link to the license
EU project number
Project
Open Access publication
Collections
Restricted until
Title in another language
Research Projects
Organizational Units
Journal Issue
Publication type
Journal article
Publication status
Published
Published in
Biomedical Spectroscopy and Imaging ; 9 (2020), 1-2. - pp. 47-54. - IOS Press. - ISSN 2212-8794. - eISSN 2212-8808
Abstract
In many scientific fields there is a high interest to study molecular adsorption processes on surfaces. The adsorbed molecule can have significant impact on the properties of the material under study, for example protein adsorption to inorganic material can enhance its biocompatibility. Attenuated total reflection Fourier-transform infrared (ATR-FTIR) spectroscopy is a suitable method to monitor such adsorption processes close to a surface. In this study, ZnO films were synthesized on silicon ATR substrates via a mild hydrothermal reaction. The films were then characterized by scanning electron microscopy (SEM) and FTIR microscopy. Chemical imaging with FTIR microscopy allowed to analyze the composition of the heterogeneous film samples. ATR-FTIR spectroscopy was then applied to investigate the adsorption properties of the ZnO films. Protein solutions of bovine serum albumine (BSA) were circulated in a closed cycle over the ZnO film and IR spectra were recorded during the adsorption process. A stronger protein adsorption was observed for silicon substrates coated with ZnO than for plain silicon. Furthermore, subsequent flushing with pure water and desorption measurements indicated a stronger protein binding to ZnO than to plain silicon.
Summary in another language
Subject (DDC)
540 Chemistry
Keywords
Protein adsorption, surface, ZnO film, ATR-FTIR spectroscopy
Conference
Review
undefined / . - undefined, undefined. - (undefined; undefined)
Cite This
ISO 690HINZE, Wolfgang G., Mohammad A. FALLAH, Karin HAUSER, 2020. Protein adsorption on ZnO films studied by ATR-FTIR spectroscopy. In: Biomedical Spectroscopy and Imaging. IOS Press. 9(1-2), pp. 47-54. ISSN 2212-8794. eISSN 2212-8808. Available under: doi: 10.3233/BSI-200199
BibTex
@article{Hinze2020-05-15Prote-52009,
  year={2020},
  doi={10.3233/BSI-200199},
  title={Protein adsorption on ZnO films studied by ATR-FTIR spectroscopy},
  number={1-2},
  volume={9},
  issn={2212-8794},
  journal={Biomedical Spectroscopy and Imaging},
  pages={47--54},
  author={Hinze, Wolfgang G. and Fallah, Mohammad A. and Hauser, Karin}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/52009">
    <dc:contributor>Hauser, Karin</dc:contributor>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dcterms:title>Protein adsorption on ZnO films studied by ATR-FTIR spectroscopy</dcterms:title>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/29"/>
    <dc:language>eng</dc:language>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/52009/1/Hinze_2-1g89znyxukssa1.pdf"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/29"/>
    <dc:rights>Attribution-NonCommercial 4.0 International</dc:rights>
    <dc:creator>Fallah, Mohammad A.</dc:creator>
    <dc:creator>Hinze, Wolfgang G.</dc:creator>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2020-12-03T10:21:57Z</dcterms:available>
    <dcterms:issued>2020-05-15</dcterms:issued>
    <dc:contributor>Hinze, Wolfgang G.</dc:contributor>
    <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by-nc/4.0/"/>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/52009"/>
    <dc:contributor>Fallah, Mohammad A.</dc:contributor>
    <dc:creator>Hauser, Karin</dc:creator>
    <dcterms:abstract xml:lang="eng">In many scientific fields there is a high interest to study molecular adsorption processes on surfaces. The adsorbed molecule can have significant impact on the properties of the material under study, for example protein adsorption to inorganic material can enhance its biocompatibility. Attenuated total reflection Fourier-transform infrared (ATR-FTIR) spectroscopy is a suitable method to monitor such adsorption processes close to a surface. In this study, ZnO films were synthesized on silicon ATR substrates via a mild hydrothermal reaction. The films were then characterized by scanning electron microscopy (SEM) and FTIR microscopy. Chemical imaging with FTIR microscopy allowed to analyze the composition of the heterogeneous film samples. ATR-FTIR spectroscopy was then applied to investigate the adsorption properties of the ZnO films. Protein solutions of bovine serum albumine (BSA) were circulated in a closed cycle over the ZnO film and IR spectra were recorded during the adsorption process. A stronger protein adsorption was observed for silicon substrates coated with ZnO than for plain silicon. Furthermore, subsequent flushing with pure water and desorption measurements indicated a stronger protein binding to ZnO than to plain silicon.</dcterms:abstract>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2020-12-03T10:21:57Z</dc:date>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/52009/1/Hinze_2-1g89znyxukssa1.pdf"/>
  </rdf:Description>
</rdf:RDF>
Internal note
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Contact
URL of original publication
Test date of URL
Examination date of dissertation
Method of financing
Comment on publication
Alliance license
Corresponding Authors der Uni Konstanz vorhanden
International Co-Authors
Bibliography of Konstanz
Yes
Refereed
Yes