Publikation:

ROM-Based Multiobjective Optimization with PDE Constraints

Lade...
Vorschaubild

Dateien

Banholzer_2-1g98y1ic7inp29.pdf
Banholzer_2-1g98y1ic7inp29.pdfGröße: 8.87 MBDownloads: 511

Datum

2021

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

DOI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Green
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Dissertation
Publikationsstatus
Published

Erschienen in

Zusammenfassung

In many optimization problems arising from applications, several objectives are present. Thus, if these objectives are conflicting with each other, there is no canonical solution to these problems. This leads to the notion of multiobjective optimization, in which the goal is to compute the set of all optimal compromises (the Pareto set or Pareto front) between the conflicting objectives. Multiobjective optimization problems with PDE constraints are especially relevant in applications, since many occurring systems can be modeled by a PDE. This thesis is concerned with investigating methods for efficiently solving PDE-constrained multiobjective optimization problems with a potentially arbitrary number of objectives.
Scalarization methods are a popular tool for solving general multiobjective optimization problems. Their underlying idea is to transform the problem into a series of scalar optimization problems, which can then be solved by using well-known techniques from scalar optimization. For two specific methods -- the Euclidean reference point method and the Pascoletti-Serafini method -- a hierarchical approach of computing the Pareto front based on iteratively solving subproblems is presented and rigorously analyzed. The resulting algorithms are tested by a linear-quadratic multiobjective optimal control problem and a non-convex multiobjective parameter optimization problem.
However, solving these problems implies a high computational effort due to the high-dimensional equation systems arising from a discretization of the PDE. Model-order reduction techniques, which replace the high-dimensional model of the PDE with a low-dimensional reduced-order model, are a popular tool for reducing the computational effort in these cases. One issue in this context is finding a good balance between reducing the computational effort and the resulting approximation error. To this end, it is shown how a-posteriori error estimates and a Trust-Region method can be used to guarantee a desired error tolerance while still gaining a sufficient decrease of the computational effort. Numerical experiments on the two afore-mentioned examples are used to verify these approaches.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
510 Mathematik

Schlagwörter

Multiobjective optimization; Hierarchical multiobjective optimization; Scalarization method; Euclidean reference point method; Pascoletti-Serafini method; PDE-constrained optimization; Multiobjective linear-quadratic optimal control problem; Multiobjective parameter optimization problem; Model-order reduction; Proper Orthogonal Decomposition; Reduced Basis method; A-posteriori error estimation; Trust-Region RB algorithm

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690BANHOLZER, Stefan, 2021. ROM-Based Multiobjective Optimization with PDE Constraints [Dissertation]. Konstanz: University of Konstanz
BibTex
@phdthesis{Banholzer2021ROMBa-54777,
  year={2021},
  title={ROM-Based Multiobjective Optimization with PDE Constraints},
  author={Banholzer, Stefan},
  address={Konstanz},
  school={Universität Konstanz}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/54777">
    <dc:language>eng</dc:language>
    <dcterms:title>ROM-Based Multiobjective Optimization with PDE Constraints</dcterms:title>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dc:creator>Banholzer, Stefan</dc:creator>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/54777"/>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/54777/3/Banholzer_2-1g98y1ic7inp29.pdf"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-09-02T08:01:10Z</dcterms:available>
    <dc:rights>terms-of-use</dc:rights>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dcterms:abstract xml:lang="eng">In many optimization problems arising from applications, several objectives are present. Thus, if these objectives are conflicting with each other, there is no canonical solution to these problems. This leads to the notion of multiobjective optimization, in which the goal is to compute the set of all optimal compromises (the Pareto set or Pareto front) between the conflicting objectives. Multiobjective optimization problems with PDE constraints are especially relevant in applications, since many occurring systems can be modeled by a PDE. This thesis is concerned with investigating methods for efficiently solving PDE-constrained multiobjective optimization problems with a potentially arbitrary number of objectives.&lt;br /&gt;Scalarization methods are a popular tool for solving general multiobjective optimization problems. Their underlying idea is to transform the problem into a series of scalar optimization problems, which can then be solved by using well-known techniques from scalar optimization. For two specific methods -- the Euclidean reference point method and the Pascoletti-Serafini method -- a hierarchical approach of computing the Pareto front based on iteratively solving subproblems is presented and rigorously analyzed. The resulting algorithms are tested by a linear-quadratic multiobjective optimal control problem and a non-convex multiobjective parameter optimization problem.&lt;br /&gt;However, solving these problems implies a high computational effort due to the high-dimensional equation systems arising from a discretization of the PDE. Model-order reduction techniques, which replace the high-dimensional model of the PDE with a low-dimensional reduced-order model, are a popular tool for reducing the computational effort in these cases. One issue in this context is finding a good balance between reducing the computational effort and the resulting approximation error. To this end, it is shown how a-posteriori error estimates and a Trust-Region method can be used to guarantee a desired error tolerance while still gaining a sufficient decrease of the computational effort. Numerical experiments on the two afore-mentioned examples are used to verify these approaches.</dcterms:abstract>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-09-02T08:01:10Z</dc:date>
    <dc:contributor>Banholzer, Stefan</dc:contributor>
    <dcterms:issued>2021</dcterms:issued>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/54777/3/Banholzer_2-1g98y1ic7inp29.pdf"/>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

July 7, 2021
Hochschulschriftenvermerk
Konstanz, Univ., Diss., 2021
Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen