Publikation:

Forecasting Euro-Area Variables with German Pre-EMU Data

Lade...
Vorschaubild

Dateien

Zu diesem Dokument gibt es keine Dateien.

Datum

2008

Autor:innen

Lütkepohl, Helmut
Marcellino, Massimiliano

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

DOI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

Journal of Forecasting. 2008, 27(6), pp. 465-481. Available under: doi: 10.1002/for.1064

Zusammenfassung

It is investigated whether euro area variables can be forecast better based on synthetic time series for the pre-euro period or by using just data from Germany for the pre-euro period. Our forecast comparison is based on quarterly data for the period 1970Q1-2003Q4 for 10 macroeconomic variables. The years 2000-2003 are used as forecasting period. A range of different univariate forecasting methods is applied. Some of them are based on linear autoregressive models and we also use some nonlinear or time-varying coefficient models. It turns out that most variables which have a similar level for Germany and the euro area such as prices can be better predicted based on German data, while aggregated European data are preferable for forecasting variables which need considerable adjustments in their levels when joining German and European Monetary Union (EMU) data. These results suggest that for variables which have a similar level for Germany and the euro area it may be reasonable to consider the German pre-EMU data for studying economic problems in the euro area.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
330 Wirtschaft

Schlagwörter

Aggregation, forecasting, European monetary union, constructing EMU data

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690BRÜGGEMANN, Ralf, Helmut LÜTKEPOHL, Massimiliano MARCELLINO, 2008. Forecasting Euro-Area Variables with German Pre-EMU Data. In: Journal of Forecasting. 2008, 27(6), pp. 465-481. Available under: doi: 10.1002/for.1064
BibTex
@article{Bruggemann2008Forec-1811,
  year={2008},
  doi={10.1002/for.1064},
  title={Forecasting Euro-Area Variables with German Pre-EMU Data},
  number={6},
  volume={27},
  journal={Journal of Forecasting},
  pages={465--481},
  author={Brüggemann, Ralf and Lütkepohl, Helmut and Marcellino, Massimiliano}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/1811">
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/1811"/>
    <dcterms:title>Forecasting Euro-Area Variables with German Pre-EMU Data</dcterms:title>
    <dc:rights>terms-of-use</dc:rights>
    <dc:creator>Marcellino, Massimiliano</dc:creator>
    <dc:creator>Brüggemann, Ralf</dc:creator>
    <dc:language>eng</dc:language>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/46"/>
    <dcterms:abstract xml:lang="eng">It is investigated whether euro area variables can be forecast better based on synthetic time series for the pre-euro period or by using just data from Germany for the pre-euro period. Our forecast comparison is based on quarterly data for the period 1970Q1-2003Q4 for 10 macroeconomic variables. The years 2000-2003 are used as forecasting period. A range of different univariate forecasting methods is applied. Some of them are based on linear autoregressive models and we also use some nonlinear or time-varying coefficient models. It turns out that most variables which have a similar level for Germany and the euro area such as prices can be better predicted based on German data, while aggregated European data are preferable for forecasting variables which need considerable adjustments in their levels when joining German and European Monetary Union (EMU) data. These results suggest that for variables which have a similar level for Germany and the euro area it may be reasonable to consider the German pre-EMU data for studying economic problems in the euro area.</dcterms:abstract>
    <dc:creator>Lütkepohl, Helmut</dc:creator>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-23T09:36:03Z</dcterms:available>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-23T09:36:03Z</dc:date>
    <dcterms:issued>2008</dcterms:issued>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/46"/>
    <dc:contributor>Marcellino, Massimiliano</dc:contributor>
    <dc:contributor>Lütkepohl, Helmut</dc:contributor>
    <dc:contributor>Brüggemann, Ralf</dc:contributor>
    <dcterms:bibliographicCitation>Publ. in: Journal of Forecasting 27 (2008), 6, 465-481</dcterms:bibliographicCitation>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen